Ranjan Rakesh, Sahana Bikash Chandra
Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna-, 800005 India.
Cogn Neurodyn. 2024 Oct;18(5):2779-2807. doi: 10.1007/s11571-024-10120-1. Epub 2024 May 11.
Numerous studies on early detection of schizophrenia (SZ) have utilized all available channels or employed set of a few time domain or frequency domain features, while a limited number of features may not be sufficient enough to perform diagnosis efficiently. To encounter these problems, an automated diagnosis model is proposed for the efficient diagnosis of schizophrenia symptomatic adolescent subjects from electroencephalogram (EEG) signals via machine intelligence. A publicly accessible EEG dataset featuring 16-channels EEG obtained from 84 adolescents (45 SZ symptomatic and 39 healthy control) is used to demonstrate the work. Initially, the signals are decomposed into sub-bands using two multi-resolution signal analysis methods: Empirical Wavelet Transform and Empirical mode decomposition. 75 unique features from each sub-bands are extracted and the few selective prominent features are applied to machine learning classifiers for optimal sub-band selection. Subsequently, a hybrid model is proposed, combining convolutional neural network (CNN) and ensemble bagged tree, incorporating both deep learning and handcrafted features to perform SZ diagnosis. This innovative model achieved superior classification performance compared to existing methods, offering a promising approach for SZ diagnosis. Furthermore, the study explores the impact of different brain regions and combined regional data in SZ diagnosis comprehensively. Hence, this computer-assisted decision-making model minimizes the limitations of prior studies by providing a more robust and efficient diagnostic system for schizophrenia.
许多关于精神分裂症(SZ)早期检测的研究都利用了所有可用通道,或采用了一些时域或频域特征集,而有限数量的特征可能不足以有效地进行诊断。为了解决这些问题,提出了一种自动诊断模型,通过机器智能从脑电图(EEG)信号中对有精神分裂症症状的青少年受试者进行高效诊断。使用一个可公开获取的EEG数据集来展示这项工作,该数据集包含从84名青少年(45名有精神分裂症症状者和39名健康对照)获得的16通道EEG。首先,使用两种多分辨率信号分析方法将信号分解为子带:经验小波变换和经验模态分解。从每个子带中提取75个独特特征,并将少数选择性突出特征应用于机器学习分类器以进行最佳子带选择。随后,提出了一种混合模型,将卷积神经网络(CNN)和集成袋装树相结合,融合深度学习和手工制作的特征来进行精神分裂症诊断。与现有方法相比,这种创新模型实现了卓越的分类性能,为精神分裂症诊断提供了一种有前景 的方法。此外,该研究全面探讨了不同脑区以及组合区域数据在精神分裂症诊断中的影响。因此,这种计算机辅助决策模型通过为精神分裂症提供一个更强大、更有效的诊断系统,最大限度地减少了先前研究的局限性。