Suppr超能文献

用于可见光诱导光催化降解工业纺织废水的氧化锌/银/氧化镉纳米复合材料

ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

作者信息

Saravanan R, Mansoob Khan M, Gupta Vinod Kumar, Mosquera E, Gracia F, Narayanan V, Stephen A

机构信息

Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile; Nanoscale Materials Laboratory, Department of Materials Science, University of Chile, Avenida Tupper 2069, Santiago, Chile.

School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 712-749, South Korea.

出版信息

J Colloid Interface Sci. 2015 Aug 15;452:126-133. doi: 10.1016/j.jcis.2015.04.035. Epub 2015 Apr 23.

Abstract

A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance.

摘要

采用热分解法合成了三元ZnO/Ag/CdO纳米复合材料。通过X射线衍射、场发射扫描电子显微镜、透射电子显微镜、紫外可见光谱和X射线光电子能谱对所得纳米复合材料进行了表征。与二元ZnO/Ag和ZnO/CdO纳米复合材料相比,ZnO/Ag/CdO纳米复合材料在可见光照射下对甲基橙和亚甲基蓝的降解表现出增强的光催化活性。ZnO/Ag/CdO纳米复合材料还用于工业纺织废水的降解(实际样品分析),在可见光照射下210分钟内降解率超过90%。ZnO/Ag/CdO纳米复合材料的小尺寸、高比表面积和协同效应是其高光催化活性的原因。这些结果还表明,Ag纳米颗粒诱导了可见光活性,并促进了ZnO/Ag/CdO纳米复合材料中有效的电荷分离,从而提高了光催化性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验