Suppr超能文献

群体公平性的进化动态

Evolutionary dynamics of group fairness.

作者信息

Santos Fernando P, Santos Francisco C, Paiva Ana, Pacheco Jorge M

机构信息

INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, IST-Tagusparque, 2744-016 Porto Salvo, Portugal; ATP-group, Instituto de Investigação Interdisciplinar, P-1649-003 Lisboa Codex, Portugal.

INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, IST-Tagusparque, 2744-016 Porto Salvo, Portugal.

出版信息

J Theor Biol. 2015 Aug 7;378:96-102. doi: 10.1016/j.jtbi.2015.04.025. Epub 2015 Apr 30.

Abstract

The emergence and impact of fairness is commonly studied in the context of 2-person games, notably the Ultimatum Game. Often, however, humans face problems of collective action involving more than two individuals where fairness is known to play a very important role, and whose dynamics cannot be inferred from what is known from 2-person games. Here, we propose a generalization of the Ultimatum Game for an arbitrary number of players--the Multiplayer Ultimatum Game. Proposals are made to a group of responders who must individually reject or accept the proposal. If the total number of individual acceptances stands below a given threshold, the offer will be rejected; otherwise, the offer will be accepted, and equally shared by all responders. We investigate the evolution of fairness in populations of individuals by means of evolutionary game theory, providing both analytical insights and results from numerical simulations. We show how imposing stringent consensuses significantly increases the value of the proposals, leading to fairer outcomes and more tolerant players. Furthermore, we show how stochastic effects--such as imitation errors and/or errors when assessing the fitness of others--may further enhance the overall success in reaching fair collective action.

摘要

公平性的出现及其影响通常是在两人博弈的背景下进行研究的,尤其是最后通牒博弈。然而,人类常常面临涉及两个以上个体的集体行动问题,在这类问题中,公平性起着非常重要的作用,而且其动态过程无法从两人博弈中已知的情况推断出来。在此,我们提出了一种适用于任意数量玩家的最后通牒博弈的推广形式——多人最后通牒博弈。提议是向一组回应者提出的,他们必须各自决定拒绝或接受该提议。如果个人接受提议的总数低于给定阈值,提议将被拒绝;否则,提议将被接受,并由所有回应者平均分配。我们借助演化博弈理论研究个体群体中公平性的演变,既提供分析性见解,也给出数值模拟结果。我们展示了施加严格的共识如何显著提高提议的价值,从而带来更公平的结果和更宽容的玩家。此外,我们还展示了随机效应——例如模仿错误和/或评估他人适应度时的错误——如何进一步提高达成公平集体行动的总体成功率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验