Girst S, Marx C, Bräuer-Krisch E, Bravin A, Bartzsch S, Oelfke U, Greubel C, Reindl J, Siebenwirth C, Zlobinskaya O, Multhoff G, Dollinger G, Schmid T E, Wilkens J J
Universität der Bundeswehr München, Neubiberg, Germany.
Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.
Phys Med. 2015 Sep;31(6):615-20. doi: 10.1016/j.ejmp.2015.04.004. Epub 2015 Apr 27.
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy.
在放射治疗中,正常组织发生损伤的风险常常限制了可施加于肿瘤的辐射剂量。微束放射治疗(MRT)是一种空间分割的光子放射疗法,目前正在欧洲同步辐射装置(ESRF)进行测试,以改善对正常组织的保护。MRT利用由同步加速器产生的一系列微观上薄且近乎平行的X射线束。在慕尼黑的离子微探针SNAKE,正在研究聚焦质子微束(“质子微通道”)以改善对正常组织的保护。在此,我们比较研究了亚毫米级X射线与质子束的微束/微通道照射,以在体外人体皮肤模型中最小化正常组织损伤的风险。使用四种不同的照射模式,在ESRF用平行的同步加速器产生的X射线束或在SNAKE用20 MeV质子,在照射区域以2 Gy的平均剂量对皮肤组织进行照射:均匀场、平行线以及使用两种不同通道尺寸的微通道照射。在MTT试验中测定的正常组织活力,在质子或X射线微通道照射后显著高于均匀场照射。与这些发现一致,通过测量角质形成细胞中的微核确定的遗传损伤,在质子或X射线微通道照射后与均匀场照射相比显著减少。我们的数据表明,与均匀照射相比,使用X射线或质子微通道进行皮肤照射可保持更高的细胞活力和DNA完整性,因此可能改善放射治疗后的正常组织保护。