Suppr超能文献

基于蛋白质组和转录组驱动的人类心肌细胞代谢网络重建及其在糖尿病标志物识别中的应用。

Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes.

作者信息

Väremo Leif, Scheele Camilla, Broholm Christa, Mardinoglu Adil, Kampf Caroline, Asplund Anna, Nookaew Intawat, Uhlén Mathias, Pedersen Bente Klarlund, Nielsen Jens

机构信息

Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.

Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark.

出版信息

Cell Rep. 2015 May 12;11(6):921-933. doi: 10.1016/j.celrep.2015.04.010. Epub 2015 Apr 30.

Abstract

Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network context for the integration of high-throughput data. We generated myocyte-specific RNA-sequencing data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the downregulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D.

摘要

骨骼肌细胞代谢活跃,易受胰岛素抵抗影响,因此与2型糖尿病(T2D)有关。这种复杂的疾病涉及全身代谢变化,在系统层面阐明这些变化需要全基因组数据和生物网络。基因组规模代谢模型(GEMs)为整合高通量数据提供了网络背景。我们生成了肌细胞特异性RNA测序数据,并研究了它们与蛋白质组数据的相关性。然后,这些数据被用于重建一个全面的肌细胞GEM。接下来,我们对六项比较T2D患者与健康受试者肌肉转录的研究进行了荟萃分析。转录变化被映射到肌细胞GEM上,揭示了T2D中广泛的转录调控,特别是在丙酮酸氧化、支链氨基酸分解代谢和四氢叶酸代谢周围,这些代谢过程通过下调的二氢硫辛酰胺脱氢酶相互关联。引人注目的是,这种代谢调控背后的基因特征成功地对个体样本的疾病状态进行了分类,表明这些途径的调控是肌细胞对T2D反应的普遍特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验