Caballero Susana, Duchêne Sebastian, Garavito Manuel F, Slikas Beth, Baker C Scott
Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia.
Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia; School of Biological Sciences, The University of Sydney, NSW, Australia.
PLoS One. 2015 May 6;10(5):e0123543. doi: 10.1371/journal.pone.0123543. eCollection 2015.
A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the 'river dolphins', early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three 'river dolphins' (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans.
少数鲸类动物已经适应了完全淡水环境,它们从海洋环境的祖先起源地迁徙到亚洲和南美洲的河流中。这包括“河豚”,它们是齿鲸亚目谱系的早期分支,以及两种真海豚(海豚科)。成功适应淡水环境可能需要增加参与线粒体渗透平衡等过程的能量需求。因此,河栖齿鲸为哺乳动物从海洋栖息地适应淡水栖息地提供了一个引人注目的自然实验。在这里,我们通过对完整线粒体基因组的分析,使用选择测试和蛋白质结构建模,展示了河栖齿鲸NADH脱氢酶亚基2中正向选择的初步证据。具有最高统计支持的密码子模型对应于氨基酸位点的三个离散类别,即处于正向、中性和纯化选择下的位点。使用该模型,我们发现在NADH脱氢酶亚基2的第297位存在正向选择(dN/dS>1.0),导致从苏氨酸的祖先状态替换为丙氨酸或缬氨酸。对27个鲸类线粒体基因组的系统发育重建表明,丙氨酸替换在鲸类中至少进化了四次,在三种“河豚”(拉河豚科、白鳍豚科和亚马孙河豚科)中进化了一次或多次,在河栖的弗氏海豚中进化了一次(但在其海洋姐妹分类群中没有),在湄公河的短吻江豚中进化了一次(但在其海洋姐妹分类群中没有),以及在另外两种相关的海洋海豚中进化了一次。我们在大肠杆菌结构和弗氏海豚模型的跨膜结构域的α-螺旋通道中确定了这种氨基酸替换的位置。在大肠杆菌中,这个位置位于与呼吸复合体1的质子转运通道相关的螺旋中,可能在鲸类的NADH脱氢酶中具有类似的作用。