Dong Haifeng, Zhao Yong, Tang Yifan, Burkert Seth C, Star Alexander
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
ACS Appl Mater Interfaces. 2015 May 27;7(20):10734-41. doi: 10.1021/acsami.5b00447. Epub 2015 May 15.
We demonstrate a facile synthesis of different nanostructures by oxidative unzipping of stacked nitrogen-doped carbon nanotube cups (NCNCs). Depending on the initial number of stacked-cup segments, this method can yield graphene nanosheets (GNSs) or hybrid nanostructures comprised of graphene nanoribbons partially unzipped from a central nanotube core. Due to the stacked-cup structure of as-synthesized NCNCs, preventing complete exposure of graphitic planes, the unzipping mechanism is hindered, resulting in incomplete unzipping; however, individual, separated NCNCs are completely unzipped, yielding individual nitrogen-doped GNSs. Graphene-based materials have been employed as electrocatalysts for many important chemical reactions, and it has been proposed that increasing the reactive edges results in more efficient electrocatalysis. In this paper, we apply these graphene conjugates as electrocatalysts for the oxygen reduction reaction (ORR) to determine how the increase in reactive edges affects the electrocatalytic activity. This investigation introduces a new method for the improvement of ORR electrocatalysts by using nitrogen dopants more effectively, allowing for enhanced ORR performance with lower overall nitrogen content. Additionally, the GNSs were functionalized with gold nanoparticles (GNPs), resulting in a GNS/GNP hybrid, which shows efficient surface-enhanced Raman scattering and expands the scope of its application in advanced device fabrication and biosensing.
我们展示了一种通过堆叠的氮掺杂碳纳米管杯(NCNC)的氧化解链来简便合成不同纳米结构的方法。根据堆叠杯段的初始数量,该方法可以产生石墨烯纳米片(GNS)或由从中央纳米管核心部分解链的石墨烯纳米带组成的混合纳米结构。由于合成的NCNC的堆叠杯结构,阻止了石墨平面的完全暴露,解链机制受到阻碍,导致解链不完全;然而,单个分离的NCNC完全解链,产生单个氮掺杂的GNS。基于石墨烯的材料已被用作许多重要化学反应的电催化剂,并且有人提出增加反应性边缘会导致更有效的电催化。在本文中,我们将这些石墨烯共轭物用作氧还原反应(ORR)的电催化剂,以确定反应性边缘的增加如何影响电催化活性。这项研究引入了一种通过更有效地使用氮掺杂剂来改进ORR电催化剂的新方法,从而在较低的总氮含量下实现增强的ORR性能。此外,GNS用金纳米颗粒(GNP)进行了功能化,形成了GNS/GNP杂化物,该杂化物显示出高效的表面增强拉曼散射,并扩大了其在先进器件制造和生物传感中的应用范围。