Ifrim Marius F, Williams Kathryn R, Bassell Gary J
Departments of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia 30322.
Departments of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
J Neurosci. 2015 May 6;35(18):7116-30. doi: 10.1523/JNEUROSCI.2802-14.2015.
Fragile X syndrome (FXS) is caused by the loss of the fragile X mental retardation protein (FMRP), an RNA binding protein that regulates translation of numerous target mRNAs, some of which are dendritically localized. Our previous biochemical studies using synaptoneurosomes demonstrate a role for FMRP and miR-125a in regulating the translation of PSD-95 mRNA. However, the local translation of PSD-95 mRNA within dendrites and spines, as well as the roles of FMRP or miR-125a, have not been directly studied. Herein, local synthesis of a Venus-PSD-95 fusion protein was directly visualized in dendrites and spines using single-molecule imaging of a diffusion-restricted Venus-PSD-95 reporter under control of the PSD-95 3'UTR. The basal translation rates of Venus-PSD-95 mRNA was increased in cultured hippocampal neurons from Fmr1 KO mice compared with WT neurons, which correlated with a transient elevation of endogenous PSD-95 within dendrites. Following mGluR stimulation with (S)-3,5-dihydroxyphenylglycine, the rate of Venus-PSD-95 mRNA translation increased rapidly in dendrites of WT hippocampal neurons, but not in those of Fmr1 KO neurons or when the binding site of miR125a, previously shown to bind PSD-95 3'UTR, was mutated. This study provides direct support for the hypothesis that local translation within dendrites and spines is dysregulated in FXS. Impairments in the regulated local synthesis of PSD-95, a critical regulator of synaptic structure and function, may affect the spatiotemporal control of PSD-95 levels and affect dendritic spine development and synaptic plasticity in FXS.
脆性X综合征(FXS)是由脆性X智力低下蛋白(FMRP)缺失引起的,FMRP是一种RNA结合蛋白,可调节众多靶mRNA的翻译,其中一些mRNA定位于树突。我们之前使用突触体进行的生化研究表明,FMRP和miR-125a在调节PSD-95 mRNA的翻译中起作用。然而,PSD-95 mRNA在树突和棘内的局部翻译以及FMRP或miR-125a的作用尚未得到直接研究。在此,使用在PSD-95 3'UTR控制下的扩散受限的Venus-PSD-95报告基因的单分子成像,直接在树突和棘中可视化Venus-PSD-95融合蛋白的局部合成。与野生型(WT)神经元相比,来自Fmr1基因敲除(KO)小鼠的培养海马神经元中Venus-PSD-95 mRNA的基础翻译速率增加,这与树突内内源性PSD-95的短暂升高相关。在用(S)-3,5-二羟基苯甘氨酸刺激代谢型谷氨酸受体(mGluR)后,WT海马神经元树突中Venus-PSD-95 mRNA的翻译速率迅速增加,但Fmr1 KO神经元的树突中或先前显示与PSD-95 3'UTR结合的miR125a的结合位点发生突变时则不然。本研究为FXS中树突和棘内的局部翻译失调这一假说提供了直接支持。PSD-95是突触结构和功能的关键调节因子,其受调控的局部合成受损可能会影响PSD-95水平的时空控制,并影响FXS中的树突棘发育和突触可塑性。