Suppr超能文献

金纳米晶体修饰的δ-MnO₂作为高性能锂氧电池的高效催化阴极。

Au-nanocrystals-decorated δ-MnO2 as an efficient catalytic cathode for high-performance Li-O2 batteries.

作者信息

Liu Shuangyu, Wang Guoqing, Tu Fangfang, Xie Jian, Yang Hui Ying, Zhang Shichao, Zhu Tiejun, Cao Gaoshao, Zhao Xinbing

机构信息

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

Nanoscale. 2015 Jun 7;7(21):9589-96. doi: 10.1039/c5nr01344e.

Abstract

A Li-O2 battery works based on the reversible formation and decomposition of Li2O2, which is insulating and highly reactive. Designing a catalytic cathode capable of controlling Li2O2 growth recently became a challenge to overcome this barrier. In this work, we present a new design of catalytic cathode by growing porous Au/δ-MnO2 electrocatalyst directly on a conductive substrate. We found that Au/δ-MnO2 can catalyze the directed growth of Li2O2 into a thin/small form, only inside porous δ-MnO2, and along the surface of δ-MnO2 sheets. We proposed the catalytic mechanism of Au/δ-MnO2, where Au plays a critical role in catalyzing the nucleation, crystallization and conformal growth of Li2O2 on δ-MnO2 sheets. Li-O2 batteries with an Au/δ-MnO2 catalytic cathode showed excellent electrochemical performance due to this favorable Li2O2 growth habit. The battery yielded a high capacity of 10,600 mA h g(-1) with a low polarization of 0.91 V at 100 mA g(-1). Superior cycling stability could be achieved in both capacity-limited (500 mA h g(-1), 165 times at 400 mA g(-1)) and unlimited (ca. 3000 mA h g(-1), 50 cycles at 800 mA g(-1)) modes.

摘要

锂氧电池基于过氧化锂的可逆形成与分解工作,过氧化锂具有绝缘性且反应活性高。设计一种能够控制过氧化锂生长的催化阴极,成为克服这一障碍的挑战。在这项工作中,我们通过在导电基底上直接生长多孔金/δ-二氧化锰电催化剂,提出了一种催化阴极的新设计。我们发现金/δ-二氧化锰能催化过氧化锂定向生长成薄/小的形态,且仅在多孔δ-二氧化锰内部以及沿着δ-二氧化锰片层表面生长。我们提出了金/δ-二氧化锰的催化机制,其中金在催化过氧化锂在δ-二氧化锰片层上的成核、结晶和共形生长方面起关键作用。由于这种有利的过氧化锂生长习性,具有金/δ-二氧化锰催化阴极的锂氧电池表现出优异的电化学性能。该电池在100 mA g(-1)时具有10600 mA h g(-1)的高容量和0.91 V的低极化。在容量受限(500 mA h g(-1),400 mA g(-1)下165次循环)和无限制(约3000 mA h g(-1),800 mA g(-1)下50次循环)模式下均可实现优异的循环稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验