Suppr超能文献

等水杨树和非等水杨树对干旱的生长及生理响应

Growth and physiological responses of isohydric and anisohydric poplars to drought.

作者信息

Attia Ziv, Domec Jean-Christophe, Oren Ram, Way Danielle A, Moshelion Menachem

机构信息

Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.

Bordeaux Sciences Agro UMR INRA-ISPA 1391, 33195, Gradignan, France Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708, USA.

出版信息

J Exp Bot. 2015 Jul;66(14):4373-81. doi: 10.1093/jxb/erv195. Epub 2015 May 7.

Abstract

Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (gs), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Under drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (Kleaf) and E: isohydric plants reduced Kleaf, gs, and E, whereas anisohydric genotypes maintained high Kleaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (Kplant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions are discussed.

摘要

了解不同植物在可变供水条件下如何平衡碳获取和干旱脆弱性,对于预测哪些树木将在不同环境条件下实现木质生物量生产最大化至关重要。在此,对香脂杨(BS,等水基因型)、小叶杨(SI,气孔行为此前未作描述)及其杂交种香脂杨×小叶杨(BSxSI,非等水基因型)进行了研究,以评估一系列水分有效性条件下生物量积累和水分利用效率的生理基础。在水分充足时,非等水基因型(SI和BSxSI)的全株气孔导度(gs)、蒸腾作用(E)和生长速率高于等水杨树(BS)。在干旱条件下,所有基因型都通过改变gs来调节叶与茎的水势梯度,使叶片水力导度(Kleaf)和E同步:等水植物降低Kleaf、gs和E,而非等水基因型保持较高的Kleaf和E,这降低了叶片和茎的水势。然而,SI杨树在水分胁迫期间降低了其植株水力导度(Kplant),并且与BSxSI植株不同,能迅速从干旱中恢复。干旱条件下等水BS的低gs降低了中度水分胁迫下的二氧化碳同化率和生物量潜力。虽然非等水基因型在水分充足时生长最快,在水分胁迫增加时光合速率较高,但等水杨树具有更高的水分利用效率。总体而言,结果表明了三种密切相关的生物量物种应对水分胁迫的策略:存活-等水(BS)、敏感-非等水(BSxSI)和恢复力-非等水(SI)。讨论了可变环境条件下对木质生物量生长、水分利用效率和存活的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3823/4493787/57de795fbbab/exbotj_erv195_f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验