Suppr超能文献

特征显著性对视觉类别学习的影响。

Impact of feature saliency on visual category learning.

作者信息

Hammer Rubi

机构信息

Department of Communication Sciences and Disorders, Interdepartmental Neuroscience Program, Northwestern University Evanston, IL, USA.

出版信息

Front Psychol. 2015 Apr 21;6:451. doi: 10.3389/fpsyg.2015.00451. eCollection 2015.

Abstract

People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the 'essence' of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies.

摘要

人们在不同的情境中操作时,必须将大量物体分类到众多有意义的类别中。这需要识别最能预测物体“本质”(如可食用性)的视觉特征,而不是基于给定情境中最显著的特征对物体进行分类。为了获得这种能力,视觉类别学习(VCL)依赖于多种认知过程。这些过程可能包括无监督统计学习,即需要观察多个物体以学习其特征的统计信息。其他学习过程能够纳入不同来源的监督信息,以及分类物体的视觉特征,从中可以推断出少数物体之间的分类关系。这些推断使得能够得出,同一类别的物体在某些高显著性特征维度上可能彼此不同,而低显著性特征维度最能区分不同类别的物体。在这里,我通过讨论能够实现反思性分类的监督信息类型,来说明特征显著性如何影响视觉类别学习。可以说,这里讨论的原则在分类研究中常常被忽视。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cba/4404734/6025090c3317/fpsyg-06-00451-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验