Suppr超能文献

学习识别临床文本中的治疗关系。

Learning to identify treatment relations in clinical text.

作者信息

Bejan Cosmin A, Denny Joshua C

机构信息

Department of Biomedical Informatics, Vanderbilt University, Nashville, TN.

Department of Biomedical Informatics, Vanderbilt University, Nashville, TN ; Department of Medicine, Vanderbilt University, Nashville, TN.

出版信息

AMIA Annu Symp Proc. 2014 Nov 14;2014:282-8. eCollection 2014.

Abstract

In clinical notes, physicians commonly describe reasons why certain treatments are given. However, this information is not typically available in a computable form. We describe a supervised learning system that is able to predict whether or not a treatment relation exists between any two medical concepts mentioned in clinical notes. To train our prediction model, we manually annotated 958 treatment relations in sentences selected from 6,864 discharge summaries. The features used to indicate the existence of a treatment relation between two medical concepts consisted of lexical and semantic information associated with the two concepts as well as information derived from the MEDication Indication (MEDI) resource and SemRep. The best F1-measure results of our supervised learning system (84.90) were significantly better than the F1-measure results achieved by SemRep (72.34).

摘要

在临床记录中,医生通常会描述进行某些治疗的原因。然而,这些信息通常不是以可计算的形式提供的。我们描述了一种监督学习系统,它能够预测临床记录中提到的任意两个医学概念之间是否存在治疗关系。为了训练我们的预测模型,我们从6864份出院小结中选取句子,手动标注了958个治疗关系。用于表明两个医学概念之间存在治疗关系的特征包括与这两个概念相关的词汇和语义信息,以及从药物适应症(MEDI)资源和SemRep中获得的信息。我们的监督学习系统的最佳F1值结果(84.90)明显优于SemRep的F1值结果(72.34)。

相似文献

1
Learning to identify treatment relations in clinical text.
AMIA Annu Symp Proc. 2014 Nov 14;2014:282-8. eCollection 2014.
2
Assessing the role of a medication-indication resource in the treatment relation extraction from clinical text.
J Am Med Inform Assoc. 2015 Apr;22(e1):e162-76. doi: 10.1136/amiajnl-2014-002954. Epub 2014 Oct 21.
4
Using SemRep to label semantic relations extracted from clinical text.
AMIA Annu Symp Proc. 2012;2012:587-95. Epub 2012 Nov 3.
5
Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
J Biomed Inform. 2014 Apr;48:54-65. doi: 10.1016/j.jbi.2013.11.008. Epub 2013 Dec 4.
6
Ontology-based clinical information extraction from physician's free-text notes.
J Biomed Inform. 2019 Oct;98:103276. doi: 10.1016/j.jbi.2019.103276. Epub 2019 Aug 29.
7
Use of semantic features to classify patient smoking status.
AMIA Annu Symp Proc. 2008 Nov 6;2008:450-4.
8
Lancet: a high precision medication event extraction system for clinical text.
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):563-7. doi: 10.1136/jamia.2010.004077.
9
Enhancing text categorization with semantic-enriched representation and training data augmentation.
J Am Med Inform Assoc. 2006 Sep-Oct;13(5):526-35. doi: 10.1197/jamia.M2051. Epub 2006 Jun 23.
10
Medication information extraction with linguistic pattern matching and semantic rules.
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):532-5. doi: 10.1136/jamia.2010.003657.

引用本文的文献

1
Broad-coverage biomedical relation extraction with SemRep.
BMC Bioinformatics. 2020 May 14;21(1):188. doi: 10.1186/s12859-020-3517-7.
2
Generalized Extraction and Classification of Span-Level Clinical Phrases.
AMIA Annu Symp Proc. 2018 Dec 5;2018:205-214. eCollection 2018.
3
Triaging Patient Complaints: Monte Carlo Cross-Validation of Six Machine Learning Classifiers.
JMIR Med Inform. 2017 Jul 31;5(3):e19. doi: 10.2196/medinform.7140.
4
Automatic Generation of Conditional Diagnostic Guidelines.
AMIA Annu Symp Proc. 2017 Feb 10;2016:295-304. eCollection 2016.

本文引用的文献

1
Development and evaluation of an ensemble resource linking medications to their indications.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):954-61. doi: 10.1136/amiajnl-2012-001431. Epub 2013 Apr 10.
2
Using SemRep to label semantic relations extracted from clinical text.
AMIA Annu Symp Proc. 2012;2012:587-95. Epub 2012 Nov 3.
3
Assertion modeling and its role in clinical phenotype identification.
J Biomed Inform. 2013 Feb;46(1):68-74. doi: 10.1016/j.jbi.2012.09.001. Epub 2012 Sep 21.
4
Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.
J Am Med Inform Assoc. 2012 Jun;19(e1):e28-35. doi: 10.1136/amiajnl-2011-000699.
5
Pneumonia identification using statistical feature selection.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):817-23. doi: 10.1136/amiajnl-2011-000752. Epub 2012 Apr 26.
6
Electronic health records and quality of diabetes care.
N Engl J Med. 2011 Sep 1;365(9):825-33. doi: 10.1056/NEJMsa1102519.
7
Automatic extraction of relations between medical concepts in clinical texts.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):594-600. doi: 10.1136/amiajnl-2011-000153.
8
Improving drug abuse treatment delivery through adoption of harmonized electronic health record systems.
Subst Abuse Rehabil. 2011 Jul 1;2011(2):125-131. doi: 10.2147/SAR.S23030.
9
A knowledge discovery and reuse pipeline for information extraction in clinical notes.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):574-9. doi: 10.1136/amiajnl-2011-000302. Epub 2011 Jul 7.
10
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验