Suppr超能文献

对患者投诉进行分类:六种机器学习分类器的蒙特卡洛交叉验证

Triaging Patient Complaints: Monte Carlo Cross-Validation of Six Machine Learning Classifiers.

作者信息

Elmessiry Adel, Cooper William O, Catron Thomas F, Karrass Jan, Zhang Zhe, Singh Munindar P

机构信息

North Carolina State University, Department of Computer Science, Raleigh, NC, United States.

Vanderbilt University Medical Center, Nashville, TN, United States.

出版信息

JMIR Med Inform. 2017 Jul 31;5(3):e19. doi: 10.2196/medinform.7140.

Abstract

BACKGROUND

Unsolicited patient complaints can be a useful service recovery tool for health care organizations. Some patient complaints contain information that may necessitate further action on the part of the health care organization and/or the health care professional. Current approaches depend on the manual processing of patient complaints, which can be costly, slow, and challenging in terms of scalability.

OBJECTIVE

The aim of this study was to evaluate automatic patient triage, which can potentially improve response time and provide much-needed scale, thereby enhancing opportunities to encourage physicians to self-regulate.

METHODS

We implemented a comparison of several well-known machine learning classifiers to detect whether a complaint was associated with a physician or his/her medical practice. We compared these classifiers using a real-life dataset containing 14,335 patient complaints associated with 768 physicians that was extracted from patient complaints collected by the Patient Advocacy Reporting System developed at Vanderbilt University and associated institutions. We conducted a 10-splits Monte Carlo cross-validation to validate our results.

RESULTS

We achieved an accuracy of 82% and F-score of 81% in correctly classifying patient complaints with sensitivity and specificity of 0.76 and 0.87, respectively.

CONCLUSIONS

We demonstrate that natural language processing methods based on modeling patient complaint text can be effective in identifying those patient complaints requiring physician action.

摘要

背景

患者主动提出的投诉对于医疗机构而言可能是一种有用的服务补救工具。一些患者投诉包含的信息可能使医疗机构和/或医疗专业人员有必要采取进一步行动。当前的方法依赖于对患者投诉进行人工处理,这在成本、速度以及可扩展性方面可能代价高昂、进展缓慢且具有挑战性。

目的

本研究的目的是评估自动患者分诊,其有可能缩短响应时间并提供急需的规模效应,从而增加鼓励医生进行自我监管的机会。

方法

我们对几种知名的机器学习分类器进行了比较,以检测投诉是否与医生或其医疗行为相关。我们使用一个包含14335条与768名医生相关的患者投诉的真实数据集对这些分类器进行了比较,该数据集是从范德堡大学及相关机构开发的患者权益倡导报告系统收集的患者投诉中提取的。我们进行了10折蒙特卡洛交叉验证以验证我们的结果。

结果

我们在正确分类患者投诉方面的准确率达到了82%,F值为81%,灵敏度和特异度分别为0.76和0.87。

结论

我们证明基于对患者投诉文本进行建模的自然语言处理方法能够有效地识别那些需要医生采取行动的患者投诉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f7/5556254/a907040bc88f/medinform_v5i3e19_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验