Suppr超能文献

在外层富含胆固醇的不对称囊泡中,由外层鞘磷脂诱导形成的有序筏结构域。

Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.

作者信息

Lin Qingqing, London Erwin

机构信息

Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.

Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.

出版信息

Biophys J. 2015 May 5;108(9):2212-22. doi: 10.1016/j.bpj.2015.03.056.

Abstract

Sphingolipid- and cholesterol-rich liquid-ordered (Lo) lipid domains (rafts) are thought to be important organizing elements in eukaryotic plasma membranes. How they form in the sphingolipid-poor cytosolic (inner) membrane leaflet is unclear. Here, we characterize how outer-leaflet Lo domains induce inner-leaflet-ordered domains, i.e., interleaflet coupling. Asymmetric vesicles studied contained physiologically relevant cholesterol levels (∼ 37 mol %), a mixture of SM (sphingomyelin) and DOPC (dioleoylphosphatidylcholine) in their outer leaflets, and DOPC in their inner leaflets. Lo domains were observed in both leaflets, and were in register, indicative of coupling between SM-rich outer-leaflet-ordered domains and inner-leaflet-ordered domains. For asymmetric vesicles with outer-leaflet egg SM or milk SM, a fluorescent lipid with unsaturated acyl chains (NBD-DOPE) was depleted in both the outer- and inner-leaflet-ordered domains. This suggests the inner-leaflet-ordered domains were depleted in unsaturated lipid (i.e., DOPC) and thus rich in cholesterol. For asymmetric vesicles containing egg SM, outer-leaflet Lo domains were also depleted in a saturated fluorescent lipid (NBD-DPPE), while inner-leaflet Lo domains were not. This indicates that inner- and outer-leaflet Lo domains can have significantly different physical properties. In contrast, in asymmetric vesicles containing outer-leaflet milk SM, which has long acyl chains capable of interdigitating into the inner leaflet, both outer- and inner-leaflet Lo domains were depleted, to a similar extent, in NBD-DPPE. This is indicative of interdigitation-enhanced coupling resulting in inner- and outer-leaflet Lo domains with similar physical properties.

摘要

富含鞘脂和胆固醇的液态有序(Lo)脂结构域(脂筏)被认为是真核细胞质膜中的重要组织成分。它们如何在鞘脂含量低的胞质(内)膜小叶中形成尚不清楚。在这里,我们描述了外层小叶Lo结构域如何诱导内层小叶有序结构域,即叶间偶联。所研究的不对称囊泡在外层小叶中含有生理相关水平的胆固醇(约37摩尔%)、鞘磷脂(SM)和二油酰磷脂酰胆碱(DOPC)的混合物,在内层小叶中含有DOPC。在两个小叶中均观察到Lo结构域,且它们是对齐的,这表明富含SM的外层小叶有序结构域与内层小叶有序结构域之间存在偶联。对于外层小叶含有鸡蛋SM或牛奶SM的不对称囊泡,具有不饱和酰基链的荧光脂质(NBD-DOPE)在外层和内层小叶有序结构域中均减少。这表明内层小叶有序结构域中不饱和脂质(即DOPC)减少,因此富含胆固醇。对于含有鸡蛋SM的不对称囊泡,外层小叶Lo结构域在饱和荧光脂质(NBD-DPPE)中也减少,而内层小叶Lo结构域则没有。这表明内层和外层小叶Lo结构域可能具有显著不同的物理性质。相比之下,在含有外层小叶牛奶SM的不对称囊泡中,其长酰基链能够插入内层小叶,外层和内层小叶Lo结构域在NBD-DPPE中的减少程度相似。这表明相互穿插增强的偶联导致内层和外层小叶Lo结构域具有相似的物理性质。

相似文献

1
Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
Biophys J. 2015 May 5;108(9):2212-22. doi: 10.1016/j.bpj.2015.03.056.
2
Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles.
Biophys J. 2018 Aug 21;115(4):664-678. doi: 10.1016/j.bpj.2018.07.011. Epub 2018 Jul 19.
4
Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry.
Biophys J. 2020 Aug 4;119(3):483-492. doi: 10.1016/j.bpj.2020.06.030. Epub 2020 Jul 10.
9
Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
Biochim Biophys Acta. 2007 Sep;1768(9):2205-12. doi: 10.1016/j.bbamem.2007.05.007. Epub 2007 May 13.
10
Disrupting membrane raft domains by alkylphospholipids.
Biochim Biophys Acta. 2013 May;1828(5):1384-9. doi: 10.1016/j.bbamem.2013.01.017. Epub 2013 Feb 1.

引用本文的文献

2
Disruption of liquid/liquid phase separation in asymmetric GUVs prepared by hemifusion.
bioRxiv. 2024 Jun 25:2024.06.21.600037. doi: 10.1101/2024.06.21.600037.
3
Effect of leaflet asymmetry on the stretching elasticity of lipid bilayers with phosphatidic acid.
Biophys J. 2024 Aug 20;123(16):2406-2421. doi: 10.1016/j.bpj.2024.05.031. Epub 2024 May 31.
4
Experimentally determined leaflet-leaflet phase diagram of an asymmetric lipid bilayer.
Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2308723120. doi: 10.1073/pnas.2308723120. Epub 2023 Nov 8.
5
Lipid-driven interleaflet coupling of plasma membrane order regulates FcεRI signaling in mast cells.
Biophys J. 2024 Aug 6;123(15):2256-2270. doi: 10.1016/j.bpj.2023.07.027. Epub 2023 Aug 1.
6
A Guide to Your Desired Lipid-Asymmetric Vesicles.
Membranes (Basel). 2023 Feb 23;13(3):267. doi: 10.3390/membranes13030267.
9
Model Membrane Systems Used to Study Plasma Membrane Lipid Asymmetry.
Symmetry (Basel). 2021 Aug;13(8). doi: 10.3390/sym13081356. Epub 2021 Jul 26.
10
Molecular Mechanisms Underlying Caveolin-1 Mediated Membrane Curvature.
J Membr Biol. 2022 Jun;255(2-3):225-236. doi: 10.1007/s00232-022-00236-y. Epub 2022 Apr 25.

本文引用的文献

2
Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.
PLoS One. 2014 Jan 28;9(1):e87903. doi: 10.1371/journal.pone.0087903. eCollection 2014.
3
The dependence of lipid asymmetry upon polar headgroup structure.
J Lipid Res. 2013 Dec;54(12):3385-93. doi: 10.1194/jlr.M041749. Epub 2013 Oct 7.
4
Phase behavior and domain size in sphingomyelin-containing lipid bilayers.
Biochim Biophys Acta. 2013 Apr;1828(4):1302-13. doi: 10.1016/j.bbamem.2013.01.007. Epub 2013 Jan 18.
7
The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure.
J Lipid Res. 2013 Jan;54(1):223-31. doi: 10.1194/jlr.M032722. Epub 2012 Oct 23.
9
Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study.
Biophys J. 2011 Jan 5;100(1):L1-3. doi: 10.1016/j.bpj.2010.11.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验