CNRS UMR 7338, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, Compiègne, France,
Cell Biol Toxicol. 2015 Jun;31(3):173-85. doi: 10.1007/s10565-015-9302-0. Epub 2015 May 9.
We have integrated in vitro and in silico information to investigate acetaminophen (APAP) and its metabolite N-acetyl-p-benzoquinone imine (NAPQI) toxicity in liver biochip. In previous works, we observed higher cytotoxicity of HepG2/C3a cultivated in biochips when exposed to 1 mM of APAP for 72 h as compared to Petri cultures. We complete our investigation with the present in silico approach to extend the mechanistic interpretation of the intracellular kinetics of the toxicity process. For that purpose, we propose a mathematical model based on the coupling of a drug pharmacokinetic model (PK) with a systemic biology model (SB) describing the reactive oxygen species (ROS) production by NAPQI and the subsequent glutathione (GSH) depletion. The SB model was parameterized using (i) transcriptomic data, (ii) qualitative results of time lapses ROS fluorescent curves for both control and 1-mM APAP-treated experiments, and (iii) additional GSH literature data. The PK model was parameterized (i) using the in vitro kinetic data (at 160 μM, 1 mM, 10 mM), (ii) using the parameters resulting from a physiologically based pharmacokinetic (PBPK) literature model for APAP, and (iii) by literature data describing NAPQI formation. The PK-SB model predicted a ROS increase and GSH depletion due to the NAPQI formation. The transition from a detoxification phase and NAPQI and ROS accumulation was predicted for a NAPQI concentration ranging between 0.025 and 0.25 μM in the cytosol. In parallel, we performed a dose response analysis in biochips that shows a reduction of the final hepatic cell number appeared in agreement with the time and doses associated with the switch of the NAPQI detoxification/accumulation. As a result, we were able to correlate in vitro extracellular APAP exposures with an intracellular in silico ROS accumulation using an integration of a coupled mathematical and experimental liver on chip approach.
我们整合了体外和计算机模拟信息,以研究肝芯片中对乙酰氨基酚(APAP)及其代谢物 N-乙酰对苯醌亚胺(NAPQI)的毒性。在之前的研究中,当暴露于 1mM 的 APAP 72 小时时,与 Petri 培养相比,在生物芯片中培养的 HepG2/C3a 细胞的细胞毒性更高。我们通过目前的计算机模拟方法来扩展毒性过程中细胞内动力学的机制解释,从而完成了我们的研究。为此,我们提出了一个基于药物药代动力学模型(PK)与系统生物学模型(SB)耦合的数学模型,该模型描述了 NAPQI 产生的活性氧物种(ROS)和随后的谷胱甘肽(GSH)耗竭。SB 模型使用以下方法进行了参数化:(i)转录组数据,(ii)控制和 1mM APAP 处理实验的时间流逝 ROS 荧光曲线的定性结果,以及(iii)补充 GSH 文献数据。PK 模型使用以下方法进行了参数化:(i)使用体外动力学数据(在 160μM、1mM、10mM 时),(ii)使用 APAP 的基于生理学的药代动力学(PBPK)文献模型得出的参数,以及(iii)描述 NAPQI 形成的文献数据。PK-SB 模型预测由于 NAPQI 的形成,ROS 增加和 GSH 耗竭。由于 NAPQI 浓度在细胞质中介于 0.025 和 0.25μM 之间,因此预测会从解毒阶段和 NAPQI 和 ROS 积累过渡。同时,我们在生物芯片中进行了剂量反应分析,结果显示最终肝细胞数量减少,与 NAPQI 解毒/积累的时间和剂量相关。因此,我们能够使用耦合的数学和实验肝芯片方法将体外细胞外 APAP 暴露与细胞内 ROS 积累进行关联。