Marx Uwe, Andersson Tommy B, Bahinski Anthony, Beilmann Mario, Beken Sonja, Cassee Flemming R, Cirit Murat, Daneshian Mardas, Fitzpatrick Susan, Frey Olivier, Gaertner Claudia, Giese Christoph, Griffith Linda, Hartung Thomas, Heringa Minne B, Hoeng Julia, de Jong Wim H, Kojima Hajime, Kuehnl Jochen, Leist Marcel, Luch Andreas, Maschmeyer Ilka, Sakharov Dmitry, Sips Adrienne J A M, Steger-Hartmann Thomas, Tagle Danilo A, Tonevitsky Alexander, Tralau Tewes, Tsyb Sergej, van de Stolpe Anja, Vandebriel Rob, Vulto Paul, Wang Jufeng, Wiest Joachim, Rodenburg Marleen, Roth Adrian
TissUse GmbH, Berlin, Germany.
AstraZeneca, Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, Mölndal, Sweden.
ALTEX. 2016;33(3):272-321. doi: 10.14573/altex.1603161. Epub 2016 May 15.
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
微生理系统——旨在在体外模拟人体组织、器官和循环生物学特性的微流控仿生装置——的最新出现,有望推动药物研发领域的全球范式转变。美国政府的一项非凡举措以及欧洲和亚洲的各种专门研究项目,最近已促成基于微生理系统的人体单器官和多器官工程取得了首批前沿成果。人们期望在此基础上建立的测试系统能够模拟各种疾病阶段,并在临床试验前预测毒性、免疫原性、药物代谢动力学和药效学特征以及治疗效果。因此,这项技术可能会显著影响未来药物研发的方式。此外,基于微生理系统的检测方法可能会彻底改变我们目前针对任何拟用于农业、食品、生态系统或化妆品等领域的新物质进行危害特征优先排序的全球计划,从而取代目前使用的实验动物模型。来自学术界、产业界和监管机构的36位专家在此展示了一次密集研讨会(于2015年6月在德国柏林举行)的成果。他们对照产业需求审视了当今可用的微生理系统的现状,并评估了在药物研发周期中具有适用潜力的各种方法。提出了在体外实现更高水平人体生物学模拟的可行技术解决方案。此外,还重点介绍了关键的芯片器官案例研究以及各种国家和国际项目。最后,勾勒了一条通向未来的路线图,以便在全球范围内进行更具预测性且能为监管机构所接受的物质测试。