Yuan Hongzhao, Ge Tida, Chen Xiangbi, Liu Shoulong, Zhu Zhenke, Wu Xiaohong, Wei Wenxue, Whiteley Andrew Steven, Wu Jinshui
Changsha Research Station for Agricultural and Environmental Monitoring & Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.
ISA-CAS and UWA Joint Laboratory for Soil Systems Biology, Hunan, 410125, China.
Microb Ecol. 2015 Nov;70(4):971-80. doi: 10.1007/s00248-015-0621-8. Epub 2015 May 10.
Elucidating the biodiversity of CO(2)-assimilating bacterial and algal communities in soils is important for obtaining a mechanistic view of terrestrial carbon sinks operating at global scales. "Red" acidic soils (Orthic Acrisols) cover large geographic areas and are subject to a range of management practices, which may alter the balance between carbon dioxide production and assimilation through changes in microbial CO(2)-assimilating populations. Here, we determined the abundance and diversity of CO(2)-assimilating bacteria and algae in acidic soils using quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP) of the cbbL gene, which encodes the key CO(2) assimilation enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase) in the Calvin cycle. Within the framework of a long-term experiment (Taoyuan Agro-ecosystem, subtropical China), paddy rice fields were converted in 1995 to four alternative land management regimes: natural forest (NF), paddy rice (PR), maize crops (CL), and tea plantations (TP). In 2012 (17 years after land use transformation), we collected and analyzed the soils from fields under the original and converted land management regimes. Our results indicated that fields under the PR soil management system harbored the greatest abundance of cbbL copies (4.33 × 10(8) copies g(-1) soil). More than a decade after converting PR soils to natural, rotation, and perennial management systems, a decline in both the diversity and abundance of cbbL-harboring bacteria and algae was recorded. The lowest abundance of bacteria (0.98 × 10(8) copies g(-1) soil) and algae (0.23 × 10(6) copies g(-1) soil) was observed for TP soils. When converting PR soil management to alternative management systems (i.e., NF, CL, and TP), soil edaphic factors (soil organic carbon and total nitrogen content) were the major determinants of bacterial autotrophic cbbL gene diversity. In contrast, soil phosphorus concentration was the major regulator of algal cbbL community composition. Our results provide new insights into the diversity, abundance, and modulation of organisms responsible for microbial autotrophic CO(2) fixation in red acidic soils subjected to changing management regimes.
阐明土壤中二氧化碳同化细菌和藻类群落的生物多样性,对于从机制角度理解全球尺度上陆地碳汇的运作十分重要。“红色”酸性土壤(强风化淋溶土)覆盖了大片地理区域,且受到一系列管理措施的影响,这些措施可能通过改变微生物二氧化碳同化种群数量来改变二氧化碳产生与同化之间的平衡。在此,我们利用定量聚合酶链反应(PCR)和编码卡尔文循环中关键二氧化碳同化酶(核酮糖-1,5-二磷酸羧化酶/加氧酶)的cbbL基因的末端限制性片段长度多态性(T-RFLP),测定了酸性土壤中二氧化碳同化细菌和藻类的丰度与多样性。在一项长期实验(中国亚热带桃源农业生态系统)的框架内,稻田于1995年被改造成四种不同的土地管理制度:天然林(NF)、水稻田(PR)、玉米作物田(CL)和茶园(TP)。2012年(土地利用转变17年后),我们采集并分析了原始和改造后的土地管理制度下田地的土壤。我们的结果表明,PR土壤管理系统下的田地中cbbL基因拷贝数最多(4.33×10⁸拷贝 g⁻¹土壤)。将PR土壤转变为天然、轮作和多年生管理系统十多年后,发现携带cbbL基因的细菌和藻类的多样性和丰度均有所下降。TP土壤中细菌(0.98×10⁸拷贝 g⁻¹土壤)和藻类(0.23×10⁶拷贝 g⁻¹土壤)的丰度最低。当将PR土壤管理转变为其他管理系统(即NF、CL和TP)时,土壤性质因子(土壤有机碳和总氮含量)是细菌自养cbbL基因多样性的主要决定因素。相反,土壤磷浓度是藻类cbbL群落组成的主要调节因子。我们的研究结果为在不断变化的管理制度下,红色酸性土壤中负责微生物自养二氧化碳固定的生物的多样性、丰度和调节提供了新的见解。