Suppr超能文献

追踪土壤有机质中微生物固定的二氧化碳的命运。

Tracking the fate of microbially sequestered carbon dioxide in soil organic matter.

机构信息

School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.

出版信息

Environ Sci Technol. 2013 May 21;47(10):5128-37. doi: 10.1021/es3050696. Epub 2013 May 7.

Abstract

The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ (13)C ((13)CO₂) to assess the potential CO₂ sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO₂ flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO₂ utilized by microbial biomass. The component of SOM directly associated with CO₂ capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can differentiate between SOM derived through microbial uptake of CO₂ and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.

摘要

土壤有机质(SOM)中的微生物贡献最近被证明比以前认为的要大得多,因此其在碳固存中的作用也可能被低估。在这项研究中,我们使用 (13)C ((13)CO₂) 来评估土壤化能自养细菌的潜在 CO₂固存能力,并结合核磁共振(NMR)和稳定同位素探测(SIP),这些技术独立利用土壤微生物生物量的同位素富集。通过这种方式,从 NMR 生成的分子信息与负责碳捕获的微生物的鉴定联系起来。开发了一个数学模型来确定实时 CO₂通量,以便计算净固存。确定了 28 组与现有物种具有密切同源性的细菌。令人惊讶的是,恶臭假单胞菌是主要的菌群。通过 NMR,我们观察到直接由微生物生物量利用的 CO₂形成的脂质、碳水化合物和蛋白质。在 48 小时后,与 CO₂捕获直接相关的 SOM 组分计算为 2.86 mg C(89.21 mg kg(-1))。这种方法可以区分通过微生物吸收 CO₂和其他 SOM 成分形成的 SOM,代表追踪土壤中微生物生物量的命运和动态的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验