Mittal Manish, Harrison Donald L, Thompson David M, Miller Michael J, Farmer Kevin C, Ng Yu-Tze
Department of Pharmacy, Clinical and Administrative Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Department of Pharmacy, Clinical and Administrative Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Res Social Adm Pharm. 2016 Jan-Feb;12(1):29-40. doi: 10.1016/j.sapharm.2015.03.004. Epub 2015 Apr 3.
While the choice of analytical approach affects study results and their interpretation, there is no consensus to guide the choice of statistical approaches to evaluate public health policy change.
This study compared and contrasted three statistical estimation procedures in the assessment of a U.S. Food and Drug Administration (FDA) suicidality warning, communicated in January 2008 and implemented in May 2009, on antiepileptic drug (AED) prescription claims.
Longitudinal designs were utilized to evaluate Oklahoma (U.S. State) Medicaid claim data from January 2006 through December 2009. The study included 9289 continuously eligible individuals with prevalent diagnoses of epilepsy and/or psychiatric disorder. Segmented regression models using three estimation procedures [i.e., generalized linear models (GLM), generalized estimation equations (GEE), and generalized linear mixed models (GLMM)] were used to estimate trends of AED prescription claims across three time periods: before (January 2006-January 2008); during (February 2008-May 2009); and after (June 2009-December 2009) the FDA warning.
All three statistical procedures estimated an increasing trend (P < 0.0001) in AED prescription claims before the FDA warning period. No procedures detected a significant change in trend during (GLM: -30.0%, 99% CI: -60.0% to 10.0%; GEE: -20.0%, 99% CI: -70.0% to 30.0%; GLMM: -23.5%, 99% CI: -58.8% to 1.2%) and after (GLM: 50.0%, 99% CI: -70.0% to 160.0%; GEE: 80.0%, 99% CI: -20.0% to 200.0%; GLMM: 47.1%, 99% CI: -41.2% to 135.3%) the FDA warning when compared to pre-warning period.
Although the three procedures provided consistent inferences, the GEE and GLMM approaches accounted appropriately for correlation. Further, marginal models estimated using GEE produced more robust and valid population-level estimations.
虽然分析方法的选择会影响研究结果及其解读,但在指导评估公共卫生政策变化的统计方法选择上尚无共识。
本研究比较并对比了三种统计估计程序,以评估美国食品药品监督管理局(FDA)于2008年1月发布并于2009年5月实施的关于抗癫痫药物(AED)处方申请的自杀倾向警告。
采用纵向设计评估2006年1月至2009年12月期间俄克拉荷马州(美国一个州)医疗补助申请数据。该研究纳入了9289名持续符合条件且患有癫痫和/或精神疾病的个体。使用三种估计程序[即广义线性模型(GLM)、广义估计方程(GEE)和广义线性混合模型(GLMM)]的分段回归模型来估计AED处方申请在三个时间段的趋势:之前(2006年1月 - 2008年1月);期间(2008年2月 - 2009年5月);以及之后(2009年6月 - 2009年12月)FDA发出警告之后。
所有三种统计程序均估计出在FDA警告期之前AED处方申请呈上升趋势(P < 0.0001)。与警告前时期相比,没有程序检测到在警告期间(GLM:-30.0%,99%置信区间:-60.0%至10.0%;GEE:-20.0%,99%置信区间:-70.0%至30.0%;GLMM:-23.5%,99%置信区间:-58.8%至1.2%)和之后(GLM:50.0%,99%置信区间:-70.0%至160.0%;GEE:80.0%,99%置信区间:-20.0%至200.0%;GLMM:47.1%,99%置信区间:-41.2%至135.3%)AED处方申请趋势有显著变化。
虽然这三种程序提供了一致的推断,但GEE和GLMM方法适当地考虑了相关性。此外,使用GEE估计的边际模型产生了更稳健和有效的总体水平估计。