Suppr超能文献

源自多个皮质区域的近红外光谱信号的单试验分类

Single-trial classification of near-infrared spectroscopy signals arising from multiple cortical regions.

作者信息

Schudlo Larissa C, Chau Tom

机构信息

Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, Ontario, M4G 1R8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.

Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, Ontario, M4G 1R8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.

出版信息

Behav Brain Res. 2015 Sep 1;290:131-42. doi: 10.1016/j.bbr.2015.04.053. Epub 2015 May 8.

Abstract

Near-infrared spectroscopy (NIRS) brain-computer interface (BCI) studies have primarily made use of measurements taken from a single cortical area. In particular, the anterior prefrontal cortex has been the key area used for detecting higher-level cognitive task performance. However, mental task execution typically requires coordination between several, spatially-distributed brain regions. We investigated the value of expanding the area of interrogation to include NIRS measurements from both the prefrontal and parietal cortices to decode mental states. Hemodynamic activity was monitored at 46 locations over the prefrontal and parietal cortices using a continuous-wave near-infrared spectrometer while 11 able-bodied adults rested or performed either the verbal fluency task (VFT) or Stroop task. Offline classification was performed for the three possible binary problems using 25 iterations of bagging with a linear discriminant base classifier. Classifiers were trained on a 10 dimensional feature set. When all 46 measurement locations were considered for classification, average accuracies of 80.4±7.0%, 82.4±7.6%, and 82.8±5.9% in differentiating VFT vs rest, Stroop vs rest and VFT vs Stroop, respectively, were obtained. Relative to using measurements from the anterior PFC alone, an overall average improvement of 11.3% was achieved. Utilizing NIRS measurements from the prefrontal and parietal cortices can be of value in classifying mental states involving working memory and attention. NIRS-BCI accuracies may be improved by incorporating measurements from several, distinct cortical regions, rather than a single area alone. Further development of an NIRS-BCI supporting combinations of VFT, Stroop task and rest states is also warranted.

摘要

近红外光谱(NIRS)脑机接口(BCI)研究主要利用从单个皮质区域获取的测量数据。特别是,前额叶前部皮质一直是用于检测高级认知任务表现的关键区域。然而,执行心理任务通常需要几个空间分布的脑区之间的协调。我们研究了扩大检测区域的价值,将前额叶和顶叶皮质的NIRS测量纳入其中以解码心理状态。使用连续波近红外光谱仪在前额叶和顶叶皮质的46个位置监测血流动力学活动,同时11名身体健全的成年人休息或执行言语流畅性任务(VFT)或Stroop任务。使用基于线性判别器的分类器进行25次装袋迭代,对三个可能的二元问题进行离线分类。分类器在一个10维特征集上进行训练。当考虑所有46个测量位置进行分类时,在区分VFT与休息、Stroop与休息以及VFT与Stroop时,平均准确率分别为80.4±7.0%、82.4±7.6%和82.8±5.9%。相对于仅使用前额叶前部皮质的测量数据,总体平均提高了11.3%。利用前额叶和顶叶皮质的NIRS测量数据在对涉及工作记忆和注意力的心理状态进行分类时可能具有价值。通过纳入几个不同皮质区域的测量数据,而不是仅单个区域的数据,NIRS-BCI的准确率可能会提高。支持VFT、Stroop任务和休息状态组合的NIRS-BCI的进一步开发也很有必要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验