Suppr超能文献

基于空间记忆的气味羽流源定位行为。

Spatial memory-based behaviors for locating sources of odor plumes.

机构信息

School of Oceanography, University of Washington, Seattle, 98195-7940 WA USA.

Department of Biology, Case Western Reserve University, Cleveland, 44106 OH USA.

出版信息

Mov Ecol. 2015 May 4;3(1):11. doi: 10.1186/s40462-015-0037-6. eCollection 2015.

Abstract

BACKGROUND

Many animals must locate odorant point sources during key behaviors such as reproduction, foraging and habitat selection. Cues from such sources are typically distributed as air- or water-borne chemical plumes, characterized by high intermittency due to environmental turbulence and episodically rapid changes in position and orientation during wind or current shifts. Well-known examples of such behaviors include male moths, which have physiological and behavioral specializations for locating the sources of pheromone plumes emitted by females. Male moths and many other plume-following organisms exhibit "counter-turning" behavior, in which they execute a pre-planned sequence of cross-stream movements spanning all or part of an odorant plume, combined with upstream movements towards the source. Despite its ubiquity and ecological importance, theoretical investigation of counter-turning has so far been limited to a small subset of plausible behavioral algorithms based largely on classical biased random walk gradient-climbing or oscillator models.

RESULTS

We derive a model of plume-tracking behavior that assumes a simple spatially-explicit memory of previous encounters with odorant, an explicit statistical model of uncertainty about the plume's position and extent, and the ability to improve estimates of plume characteristics over sequential encounters using Bayesian updating. The model implements spatial memory and effective cognitive strategies with minimal neural processing. We show that laboratory flight tracks of Manduca sexta moths are consistent with predictions of our spatial memory-based model. We assess plume-following performance of the spatial memory-based algorithm in terms of success and efficiency metrics, and in the context of "contests" in which the winner is the first among multiple simulated moths to locate the source.

CONCLUSIONS

Even rudimentary spatial memory can greatly enhance plume-following. In particular, spatial memory can maintain source-seeking success even when plumes are so intermittent that no pheromone is detected in most cross-wind transits. Performance metrics reflect trade-offs between "risk-averse" strategies (wide cross-wind movements, slow upwind advances) that reliably but slowly locate odor sources, and "risk-tolerant" strategies (narrow cross-wind movements, fast upwind advances) that often fail to locate a source but are fast when successful. Success in contests of risk-averse vs. risk-tolerant behaviors varies strongly with the number of competitors, suggesting empirically testable predictions for diverse plume-following taxa. More generally, spatial memory-based models provide tractable, explicit theoretical linkages between sensory biomechanics, neurophysiology and behavior, and ecological and evolutionary dynamics operating at much larger spatio-temporal scales.

摘要

背景

许多动物在繁殖、觅食和栖息地选择等关键行为中必须定位气味点源。此类来源的线索通常以空气或水载化学羽流的形式分布,由于环境湍流,其间歇性很高,并且在风向或水流变化期间位置和方向会间歇性地快速变化。这种行为的著名例子包括雄性飞蛾,它们具有定位雌性释放的信息素羽流源的生理和行为专业化。雄性飞蛾和许多其他跟随羽流的生物表现出“反向转弯”行为,即它们执行跨越整个或部分气味羽流的预先计划的横流运动序列,同时向源移动。尽管这种行为无处不在且具有生态重要性,但迄今为止,对反向转弯的理论研究仅限于基于经典偏向随机游走梯度爬升或振荡器模型的一小部分可行行为算法。

结果

我们推导出了一种羽流跟踪行为模型,该模型假设对先前与气味相遇的简单空间显式记忆,对羽流位置和范围的显式不确定性统计模型,以及使用贝叶斯更新在连续相遇中改善对羽流特征的估计的能力。该模型以最小的神经处理实现了空间记忆和有效的认知策略。我们表明,Manduca sexta 飞蛾的实验室飞行轨迹与我们基于空间记忆的模型的预测一致。我们根据成功和效率指标评估基于空间记忆的算法在羽流跟随方面的性能,并在多个模拟飞蛾中第一个找到源的“竞赛”背景下进行评估。

结论

即使是基本的空间记忆也可以大大提高羽流跟踪的能力。特别是,当羽流间歇性很强以至于在大多数横风过境中都检测不到信息素时,空间记忆可以保持寻找源的成功。性能指标反映了“避险”策略(宽横风运动,缓慢顺风前进)与“风险容忍”策略(窄横风运动,快速顺风前进)之间的权衡,前者可靠但缓慢地定位气味源,而后者通常无法找到源,但在成功时很快。避险与风险容忍行为的竞赛中的成功强烈取决于竞争对手的数量,这为各种羽流跟踪类群提供了可验证的预测。更一般地说,基于空间记忆的模型为感官生物力学、神经生理学和行为以及在更大的时空尺度上运行的生态和进化动态提供了可处理的明确理论联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/4424511/5e0e50f45699/40462_2015_37_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验