Li Dongguo, Xia Hong, Li Zhen-ya, Hua Lin, Li Lin
Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
Institute of Basic Medical Science, Peking Union Medical College, Qinghua University, No. 5 Dong Dan San Tiao, Beijing 100005, China.
Biomed Res Int. 2015;2015:746970. doi: 10.1155/2015/746970. Epub 2015 Apr 15.
Breast cancer is a heterogeneous disease with well-defined molecular subtypes. Currently, comparative genomic hybridization arrays (aCGH) techniques have been developed rapidly, and recent evidences in studies of breast cancer suggest that tumors within gene expression subtypes share similar DNA copy number aberrations (CNA) which can be used to further subdivide subtypes. Moreover, subtype-specific miRNA expression profiles are also proposed as novel signatures for breast cancer classification. The identification of mRNA or miRNA expression-based breast cancer subtypes is considered an instructive means of prognosis. Here, we conducted an integrated analysis based on copy number aberrations data and miRNA-mRNA dual expression profiling data to identify breast cancer subtype-specific biomarkers. Interestingly, we found a group of genes residing in subtype-specific CNA regions that also display the corresponding changes in mRNAs levels and their target miRNAs' expression. Among them, the predicted direct correlation of BRCA1-miR-143-miR-145 pairs was selected for experimental validation. The study results indicated that BRCA1 positively regulates miR-143-miR-145 expression and miR-143-miR-145 can serve as promising novel biomarkers for breast cancer subtyping. In our integrated genomics analysis and experimental validation, a new frame to predict candidate biomarkers of breast cancer subtype is provided and offers assistance in order to understand the potential disease etiology of the breast cancer subtypes.
乳腺癌是一种具有明确分子亚型的异质性疾病。目前,比较基因组杂交阵列(aCGH)技术发展迅速,乳腺癌研究的最新证据表明,基因表达亚型内的肿瘤具有相似的DNA拷贝数变异(CNA),可用于进一步细分亚型。此外,亚型特异性的miRNA表达谱也被提议作为乳腺癌分类的新特征。基于mRNA或miRNA表达的乳腺癌亚型鉴定被认为是一种有指导意义的预后方法。在此,我们基于拷贝数变异数据和miRNA-mRNA双表达谱数据进行了综合分析,以鉴定乳腺癌亚型特异性生物标志物。有趣的是,我们发现一组位于亚型特异性CNA区域的基因,它们在mRNA水平及其靶标miRNA的表达上也显示出相应的变化。其中,BRCA1-miR-143-miR-145对的预测直接相关性被选择用于实验验证。研究结果表明,BRCA1正向调节miR-143-miR-145的表达,且miR-143-miR-145可作为乳腺癌亚型分类有前景的新型生物标志物。在我们的综合基因组分析和实验验证中,提供了一个预测乳腺癌亚型候选生物标志物的新框架,并有助于理解乳腺癌亚型潜在的疾病病因。