Suppr超能文献

拉普拉斯支持向量机的逐次超松弛算法。

Successive overrelaxation for laplacian support vector machine.

机构信息

Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing, China.

出版信息

IEEE Trans Neural Netw Learn Syst. 2015 Apr;26(4):674-683. doi: 10.1109/TNNLS.2014.2320738.

Abstract

Semisupervised learning (SSL) problem, which makes use of both a large amount of cheap unlabeled data and a few unlabeled data for training, in the last few years, has attracted amounts of attention in machine learning and data mining. Exploiting the manifold regularization (MR), Belkin et al. proposed a new semisupervised classification algorithm: Laplacian support vector machines (LapSVMs), and have shown the state-of-the-art performance in SSL field. To further improve the LapSVMs, we proposed a fast Laplacian SVM (FLapSVM) solver for classification. Compared with the standard LapSVM, our method has several improved advantages as follows: 1) FLapSVM does not need to deal with the extra matrix and burden the computations related to the variable switching, which make it more suitable for large scale problems; 2) FLapSVM’s dual problem has the same elegant formulation as that of standard SVMs. This means that the kernel trick can be applied directly into the optimization model; and 3) FLapSVM can be effectively solved by successive overrelaxation technology, which converges linearly to a solution and can process very large data sets that need not reside in memory. In practice, combining the strategies of random scheduling of subproblem and two stopping conditions, the computing speed of FLapSVM is rigidly quicker to that of LapSVM and it is a valid alternative to PLapSVM.

摘要

在机器学习和数据挖掘领域,近年来半监督学习(SSL)问题吸引了大量关注,该问题利用大量廉价的无标签数据和少量有标签数据进行训练。Belkin 等人利用流形正则化(MR)提出了一种新的半监督分类算法:拉普拉斯支持向量机(LapSVMs),并在 SSL 领域展示了最先进的性能。为了进一步改进 LapSVMs,我们提出了一种用于分类的快速拉普拉斯支持向量机(FLapSVM)求解器。与标准 LapSVM 相比,我们的方法具有以下几个改进优势:1)FLapSVM 不需要处理额外的矩阵,也不需要处理与变量切换相关的计算,这使其更适合大规模问题;2)FLapSVM 的对偶问题具有与标准 SVMs 相同的优雅公式。这意味着核技巧可以直接应用于优化模型;3)FLapSVM 可以通过连续超松弛技术有效地解决,该技术线性收敛到一个解,可以处理不需要驻留在内存中的非常大的数据集。在实践中,通过随机调度子问题的策略和两个停止条件相结合,FLapSVM 的计算速度比 LapSVM 快得多,是 PLapSVM 的有效替代方案。

相似文献

1
Successive overrelaxation for laplacian support vector machine.
IEEE Trans Neural Netw Learn Syst. 2015 Apr;26(4):674-683. doi: 10.1109/TNNLS.2014.2320738.
2
Laplacian embedded regression for scalable manifold regularization.
IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):902-15. doi: 10.1109/TNNLS.2012.2190420.
3
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
IEEE Trans Neural Netw Learn Syst. 2016 Sep;27(9):1827-39. doi: 10.1109/TNNLS.2015.2461009. Epub 2015 Aug 10.
4
A distributed semi-supervised learning algorithm based on manifold regularization using wavelet neural network.
Neural Netw. 2019 Oct;118:300-309. doi: 10.1016/j.neunet.2018.10.014. Epub 2018 Nov 14.
5
Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management.
J Biomed Inform. 2013 Oct;46(5):869-75. doi: 10.1016/j.jbi.2013.06.014. Epub 2013 Jul 8.
6
Successive overrelaxation for support vector machines.
IEEE Trans Neural Netw. 1999;10(5):1032-7. doi: 10.1109/72.788643.
7
Nonparallel support vector machines for pattern classification.
IEEE Trans Cybern. 2014 Jul;44(7):1067-79. doi: 10.1109/TCYB.2013.2279167. Epub 2013 Sep 5.
8
Multiview Hessian regularization for image annotation.
IEEE Trans Image Process. 2013 Jul;22(7):2676-87. doi: 10.1109/TIP.2013.2255302. Epub 2013 Mar 28.
9
Structural regularized support vector machine: a framework for structural large margin classifier.
IEEE Trans Neural Netw. 2011 Apr;22(4):573-87. doi: 10.1109/TNN.2011.2108315. Epub 2011 Mar 7.
10
Laplacian Welsch Regularization for Robust Semisupervised Learning.
IEEE Trans Cybern. 2022 Jan;52(1):164-177. doi: 10.1109/TCYB.2019.2953337. Epub 2022 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验