Suppr超能文献

用于模式分类的非平行支持向量机。

Nonparallel support vector machines for pattern classification.

出版信息

IEEE Trans Cybern. 2014 Jul;44(7):1067-79. doi: 10.1109/TCYB.2013.2279167. Epub 2013 Sep 5.

Abstract

We propose a novel nonparallel classifier, called nonparallel support vector machine (NPSVM), for binary classification. Our NPSVM that is fully different from the existing nonparallel classifiers, such as the generalized eigenvalue proximal support vector machine (GEPSVM) and the twin support vector machine (TWSVM), has several incomparable advantages: 1) two primal problems are constructed implementing the structural risk minimization principle; 2) the dual problems of these two primal problems have the same advantages as that of the standard SVMs, so that the kernel trick can be applied directly, while existing TWSVMs have to construct another two primal problems for nonlinear cases based on the approximate kernel-generated surfaces, furthermore, their nonlinear problems cannot degenerate to the linear case even the linear kernel is used; 3) the dual problems have the same elegant formulation with that of standard SVMs and can certainly be solved efficiently by sequential minimization optimization algorithm, while existing GEPSVM or TWSVMs are not suitable for large scale problems; 4) it has the inherent sparseness as standard SVMs; 5) existing TWSVMs are only the special cases of the NPSVM when the parameters of which are appropriately chosen. Experimental results on lots of datasets show the effectiveness of our method in both sparseness and classification accuracy, and therefore, confirm the above conclusion further. In some sense, our NPSVM is a new starting point of nonparallel classifiers.

摘要

我们提出了一种新的非平行分类器,称为非平行支持向量机(NPSVM),用于二分类。我们的 NPSVM 与现有的非平行分类器(如广义特征近支持向量机(GEPSVM)和孪生支持向量机(TWSVM))完全不同,具有几个无与伦比的优势:1)构建了两个原问题,实现了结构风险最小化原理;2)这两个原问题的对偶问题与标准 SVMs 的优点相同,因此可以直接应用核技巧,而现有的 TWSVMs 必须基于近似核生成曲面为非线性情况构建另外两个原问题,此外,即使使用线性核,它们的非线性问题也不能退化为线性情况;3)对偶问题具有与标准 SVMs 相同的优雅表述形式,并且可以通过序列最小化优化算法有效地解决,而现有的 GEPSVM 或 TWSVM 不适合大规模问题;4)它具有与标准 SVMs 相同的固有稀疏性;5)当适当选择参数时,现有的 TWSVM 只是 NPSVM 的特例。在许多数据集上的实验结果表明,我们的方法在稀疏性和分类准确性方面都很有效,因此进一步证实了上述结论。在某种意义上,我们的 NPSVM 是非平行分类器的一个新起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验