Suppr超能文献

当前及未来气候情景下美国本土萌生柳(柳属)产量的生理与生物物理模型

A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios.

作者信息

Wang Dan, Jaiswal Deepak, LeBauer David S, Wertin Timothy M, Bollero Germán A, Leakey Andrew D B, Long Stephen P

机构信息

Energy Bioscience Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

Plant Cell Environ. 2015 Sep;38(9):1850-65. doi: 10.1111/pce.12556. Epub 2015 Jun 23.

Abstract

High-performance computing has facilitated development of biomass production models that capture the key mechanisms underlying production at high spatial and temporal resolution. Direct responses to increasing [CO2 ] and temperature are important to long-lived emerging woody bioenergy crops. Fast-growing willow (Salix spp.) within short rotation coppice (SRC) has considerable potential as a renewable biomass source, but performance over wider environmental conditions and under climate change is uncertain. We extended the bioenergy crop modeling platform, BioCro, to SRC willow by adding coppicing and C3 photosynthesis subroutines, and modifying subroutines for perennation, allocation, morphology, phenology and development. Parameterization with measurements of leaf photosynthesis, allocation and phenology gave agreement of modeled with measured yield across 23 sites in Europe and North America. Predictions for the continental USA suggest yields of ≥17 Mg ha(-1)  year(-1) in a 4 year rotation. Rising temperature decreased predicted yields, an effect partially ameliorated by rising [CO2 ]. This model, based on over 100 equations describing the physiological and biophysical mechanisms underlying production, provides a new framework for utilizing mechanism of plant responses to the environment, including future climates. As an open-source tool, it is made available here as a community resource for further application, improvement and adaptation.

摘要

高性能计算推动了生物量生产模型的发展,这些模型能够在高空间和时间分辨率下捕捉生产背后的关键机制。对于寿命较长的新兴木本生物能源作物而言,对二氧化碳浓度升高和温度升高的直接响应至关重要。短轮伐期矮林作业(SRC)中的速生柳树(柳属)作为一种可再生生物质来源具有相当大的潜力,但在更广泛的环境条件下以及气候变化情况下的表现尚不确定。我们通过添加矮林作业和C3光合作用子程序,并修改多年生、分配、形态、物候和发育等子程序,将生物能源作物建模平台BioCro扩展到SRC柳树。利用叶片光合作用、分配和物候的测量数据进行参数化,使得模型产量与欧洲和北美的23个地点的实测产量相符。对美国大陆的预测表明,在4年轮伐期内产量≥17 Mg ha⁻¹ 年⁻¹。温度升高会降低预测产量,而二氧化碳浓度升高会部分缓解这种影响。该模型基于100多个描述生产背后生理和生物物理机制的方程,为利用植物对环境(包括未来气候)的响应机制提供了一个新框架。作为一个开源工具,在此作为社区资源提供,以供进一步应用、改进和调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验