Duits M H G, Ghosh S, Mugele F
Physics of Complex Fluids Group, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Langmuir. 2015 Jun 2;31(21):5689-700. doi: 10.1021/acs.langmuir.5b01369. Epub 2015 May 20.
An analysis of the dynamics of colloids in shear flow can be challenging because of the superposition of diffusion and advection. We present a method that separates the two motions, starting from the time-dependent particle coordinates. The restriction of the tracking to flow lanes and the subtraction of estimated advective displacements are combined in an iterative scheme that eventually makes the spatial segmentation redundant. Tracking errors due to the neglect of lateral diffusion are avoided, while drifts parallel and perpendicular to the flow are eliminated. After explaining the principles of our method, we validate it against both computer simulations and experiments. A critical overall test is provided by the mean square displacement function at high Peclet numbers (up to 50). We demonstrate via simulations how the measurement accuracy depends on diffusion coefficients and flow rates, expressed in units of camera pixels and frames. Also, sample-specific issues are addressed: inaccuracies in the velocity profile for dilute suspensions (volume fraction ≤0.03) and tracking errors for concentrated ones (VF ≥ 0.3). An analysis of experiments with colloidal spheres flowing through microchannels corroborates these findings and indicates perspectives for studies on transport, mixing, or rheology in microfluidic environments.
由于扩散和平流的叠加,对剪切流中胶体动力学进行分析可能具有挑战性。我们提出了一种从随时间变化的粒子坐标出发分离这两种运动的方法。将跟踪限制在流道上以及减去估计的平流位移这两个操作结合在一个迭代方案中,该方案最终使空间分割变得多余。避免了因忽略横向扩散而导致的跟踪误差,同时消除了与流平行和垂直方向的漂移。在解释了我们方法的原理之后,我们通过计算机模拟和实验对其进行了验证。在高佩克莱数(高达50)下的均方位移函数提供了一个关键的整体测试。我们通过模拟展示了测量精度如何取决于以相机像素和帧数为单位表示的扩散系数和流速。此外,还讨论了特定样本的问题:稀悬浮液(体积分数≤0.03)速度分布的不准确性以及浓悬浮液(VF≥0.3)的跟踪误差。对胶体球流经微通道的实验分析证实了这些发现,并指出了在微流体环境中进行传输、混合或流变学研究的前景。