Halstead Neal T, Civitello David J, Rohr Jason R
Department of Integrative Biology, University of South Florida, Tampa, FL 33620, United States.
Chemosphere. 2015 Sep;135:265-71. doi: 10.1016/j.chemosphere.2015.03.091. Epub 2015 May 15.
As agricultural expansion and intensification increase to meet the growing global food demand, so too will insecticide use and thus the risk of non-target effects. Insecticide pollution poses a particular threat to aquatic macroarthropods, which play important functional roles in freshwater ecosystems. Thus, understanding the relative toxicities of insecticides to non-target functional groups is critical for predicting effects on ecosystem functions. We exposed two common macroarthropod predators, the crayfish Procambarus alleni and the water bug Belostoma flumineum, to three insecticides in each of two insecticide classes (three organophosphates: chlorpyrifos, malathion, and terbufos; and three pyrethroids: esfenvalerate, λ-cyhalothrin, and permethrin) to assess their toxicities. We generated 150 simulated environmental exposures using the US EPA Surface Water Contamination Calculator to determine the proportion of estimated peak environmental concentrations (EECs) that exceeded the US EPA level of concern (0.5×LC50) for non-endangered aquatic invertebrates. Organophosphate insecticides generated consistently low-risk exposure scenarios (EECs<0.5×LC50) for both P. alleni and B. flumineum. Pyrethroid exposure scenarios presented consistently high risk (EECs>0.5×LC50) to P. alleni, but not to B. flumineum, where only λ-cyhalothrin produced consistently high-risk exposures. Survival analyses demonstrated that insecticide class accounted for 55.7% and 91.1% of explained variance in P. alleni and B. flumineum survival, respectively. Thus, risk to non-target organisms is well predicted by pesticide class. Identifying insecticides that pose low risk to aquatic macroarthropods might help meet increased demands for food while mitigating against potential negative effects on ecosystem functions.
随着农业扩张和集约化程度的提高,以满足全球不断增长的粮食需求,杀虫剂的使用也会增加,从而导致非靶标效应的风险上升。杀虫剂污染对水生大型节肢动物构成了特别威胁,它们在淡水生态系统中发挥着重要的功能作用。因此,了解杀虫剂对非靶标功能组的相对毒性对于预测对生态系统功能的影响至关重要。我们将两种常见的大型节肢动物捕食者,即小龙虾艾伦原螯虾和水蝽美洲巨田鳖,暴露于两类杀虫剂中的三种杀虫剂(三种有机磷类:毒死蜱、马拉硫磷和特丁硫磷;以及三种拟除虫菊酯类:乙氰菊酯、高效氯氟氰菊酯和氯菊酯)中,以评估它们的毒性。我们使用美国环境保护局地表水污染计算器生成了150种模拟环境暴露情况,以确定估计的峰值环境浓度(EECs)超过美国环境保护局对非濒危水生无脊椎动物的关注水平(0.5×LC50)的比例。有机磷杀虫剂对艾伦原螯虾和美洲巨田鳖均产生持续低风险的暴露情况(EECs<0.5×LC50)。拟除虫菊酯类暴露情况对艾伦原螯虾始终呈现高风险(EECs>0.5×LC50),但对美洲巨田鳖并非如此,只有高效氯氟氰菊酯产生持续高风险暴露。生存分析表明,杀虫剂类别分别占艾伦原螯虾和美洲巨田鳖生存解释方差的55.7%和91.1%。因此,农药类别能很好地预测对非靶标生物的风险。识别对水生大型节肢动物风险较低的杀虫剂,可能有助于满足对食物日益增长的需求,同时减轻对生态系统功能的潜在负面影响。