Suppr超能文献

基于miRNA的水稻孕穗期抽穗期特性预测模型的建立。

Establishment of a prediction model for the miRNA-based heading date characteristics of rice in the booting stage.

作者信息

Chen Y C, Lin W S, Chen R K, Chao Y Y, Chin S W, Chen F C, Lee C Y

机构信息

Department of Plant Industry, National Pingtung University of Science & Technology, Pingtung, Taiwan.

Tainan District Agricultural Research and Extension Station, Council of Agriculture, Tainan, Taiwan.

出版信息

Genet Mol Res. 2015 Apr 30;14(2):4381-90. doi: 10.4238/2015.April.30.11.

Abstract

Rice (Oryza sativa L.) is one of the most important food crops in the world. In Taiwan, due to the warm climate, there are two harvests annually. However, the yield and quality of rice can vary between each crop season in any given year. Previous reports have shown that microRNAs (miRNAs) play a crucial role in many developmental and physiological processes in plants. In this study, the heading date characteristics of 167 rice cultivars from the second crop season were recorded, and 27 rice cultivars were selected for preliminary microarray analysis. A total of 14 miRNAs from different heading date characteristics in 21 cultivars were selected based on significant differences in their expression profiles. Using a correlation analysis between the heading date and selected miRNA expression obtained from real-time polymerase chain reaction (PCR) assays, we developed a heading date prediction model. The model includes nine miRNA genes with corresponding R2 values of 0.8. To confirm the model, a real-time PCR analysis was performed on an additional 27 rice cultivars and we found the model predicted the heading date with accuracy. Therefore, the developed prediction may be useful in further studies aimed at confirming the reliability of the use of miRNA in molecular breeding and to increase the selection efficiency of rice cultivars and breeding.

摘要

水稻(Oryza sativa L.)是世界上最重要的粮食作物之一。在台湾,由于气候温暖,每年有两季收成。然而,在任何给定年份,每个作物季节的水稻产量和品质可能会有所不同。先前的报告表明,微小RNA(miRNA)在植物的许多发育和生理过程中起着关键作用。在本研究中,记录了第二季作物季节167个水稻品种的抽穗期特征,并选择了27个水稻品种进行初步微阵列分析。基于21个品种不同抽穗期特征的显著表达差异,共选择了14个miRNA。通过对实时聚合酶链反应(PCR)检测获得的抽穗期与所选miRNA表达之间的相关性分析,我们建立了一个抽穗期预测模型。该模型包括9个miRNA基因,相应的R2值为0.8。为了验证该模型,对另外27个水稻品种进行了实时PCR分析,我们发现该模型能够准确预测抽穗期。因此,所建立的预测方法可能有助于进一步研究,以证实miRNA在分子育种中的应用可靠性,并提高水稻品种选育的选择效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验