Suppr超能文献

拓扑小RNA的设计与表征

Design and Characterization of Topological Small RNAs.

作者信息

Hassall Jack, MacDonald Paul, Cordero Teresa, Rostain William, Jaramillo Alfonso

机构信息

School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.

出版信息

Methods Mol Biol. 2015;1316:149-67. doi: 10.1007/978-1-4939-2730-2_13.

Abstract

RNA can self-assemble into complex structures through base pairing, as well as encode information and bind with proteins to induce enzymatic activity. Furthermore, RNA can possess intrinsic enzymatic-like (ribozymatic) activity, a property that, if necessary, can be activated only upon the binding of a small molecule or another RNA (as is the case in aptazymes). As such, RNA could be of use in nanotechnology as a programmable polymer capable of self-assembling into complex topological structures. In this chapter we describe a method for designing advanced topological structures using self-circulating RNA, exemplified by three tiers of topologically manipulated self-assembling synthetic RNA systems. The first tier of topological manipulation, the RNA knot is a physically locked structure, formed by circularizing one monomer of knotted single-stranded RNA left with loose ends (an "open" knot). The second tier, a two interlocking ring system, is made by interlocking two circular RNA components: a circular RNA target, and an RNA lasso designed to intercalate the target before circularizing. The third tier naturally extends this system into a string of topologically locked circular RNA molecules (an RNA chain). We detail the methodology used for designing such topologically complex RNAs, including computational predictions of secondary structure, and where appropriate, RNA-RNA interactions, illustrated by examples. We then describe the experimental methods used for characterizing such structures, and provide sequences of building blocks that can be used for topological manipulation of RNA.

摘要

RNA能够通过碱基配对自组装成复杂结构,还能编码信息并与蛋白质结合以诱导酶活性。此外,RNA可以具有内在的类酶(核酶)活性,这种特性在必要时仅在小分子或另一种RNA结合后才会被激活(适体酶就是这种情况)。因此,RNA作为一种能够自组装成复杂拓扑结构的可编程聚合物,可用于纳米技术。在本章中,我们描述了一种使用自循环RNA设计高级拓扑结构的方法,以三层经过拓扑操作的自组装合成RNA系统为例。拓扑操作的第一层,RNA结是一种物理锁定结构,通过将带有松散末端的打结单链RNA的一个单体环化形成(一个“开放”结)。第二层,双互锁环系统,是通过将两个环状RNA组件互锁而成:一个环状RNA靶标和一个设计用于在环化之前插入靶标的RNA套索。第三层自然地将这个系统扩展成一串拓扑锁定的环状RNA分子(一条RNA链)。我们详细介绍了设计这种拓扑复杂RNA所使用的方法,包括二级结构的计算预测,以及在适当情况下的RNA-RNA相互作用,并举例说明。然后我们描述了用于表征此类结构的实验方法,并提供了可用于RNA拓扑操作的构建模块序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验