Suppr超能文献

通过专家征询和数据建模开发具有暴露不确定性的工作暴露矩阵。

Developing a job-exposure matrix with exposure uncertainty from expert elicitation and data modeling.

作者信息

Fischer Heidi J, Vergara Ximena P, Yost Michael, Silva Michael, Lombardi David A, Kheifets Leeka

机构信息

Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California, USA.

EPRI, EMF/RF, Palo Alto, California, USA.

出版信息

J Expo Sci Environ Epidemiol. 2017 Jan;27(1):7-15. doi: 10.1038/jes.2015.37. Epub 2015 May 13.

Abstract

Job exposure matrices (JEMs) are tools used to classify exposures for job titles based on general job tasks in the absence of individual level data. However, exposure uncertainty due to variations in worker practices, job conditions, and the quality of data has never been quantified systematically in a JEM. We describe a methodology for creating a JEM which defines occupational exposures on a continuous scale and utilizes elicitation methods to quantify exposure uncertainty by assigning exposures probability distributions with parameters determined through expert involvement. Experts use their knowledge to develop mathematical models using related exposure surrogate data in the absence of available occupational level data and to adjust model output against other similar occupations. Formal expert elicitation methods provided a consistent, efficient process to incorporate expert judgment into a large, consensus-based JEM. A population-based electric shock JEM was created using these methods, allowing for transparent estimates of exposure.

摘要

工作暴露矩阵(JEMs)是在缺乏个体层面数据的情况下,根据一般工作任务对工作岗位暴露情况进行分类的工具。然而,由于工人操作、工作条件和数据质量的差异导致的暴露不确定性,在JEM中从未被系统地量化过。我们描述了一种创建JEM的方法,该方法在连续尺度上定义职业暴露,并利用启发式方法通过分配具有通过专家参与确定的参数的暴露概率分布来量化暴露不确定性。在没有可用职业水平数据的情况下,专家利用他们的知识使用相关暴露替代数据开发数学模型,并根据其他类似职业调整模型输出。正式的专家启发式方法提供了一个一致、高效的过程,将专家判断纳入一个基于共识的大型JEM中。使用这些方法创建了一个基于人群的电击JEM,从而实现了暴露的透明估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验