NASA Astrobiology Institute, JPL Icy Worlds, Pasadena, CA (USA).
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (USA).
Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8184-7. doi: 10.1002/anie.201501663. Epub 2015 May 12.
We examine the electrochemical gradients that form across chemical garden membranes and investigate how self-assembling, out-of-equilibrium inorganic precipitates-mimicking in some ways those generated in far-from-equilibrium natural systems-can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron-sulfide and iron-hydroxide reaction systems. The battery-like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light-emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self-organizing chemical systems.
我们研究了在化学花园膜中形成的电化学梯度,并探讨了自组装的、远离平衡的无机沉淀物(在某些方面类似于在远离平衡的自然系统中产生的沉淀物)如何产生电化学能量。通过注入和溶液界面方法在铁硫化物和铁氢氧化物反应系统中沉淀的膜,测量了电势能和电流。通过串联连接多个实验,证明了化学花园具有电池的性质,这些实验产生了足够的电能来点亮外部发光二极管(LED)。这项工作为确定可能在生命起源的热液氧化还原化学中起作用的地质沉淀物的相关性质以及利用自组织化学系统的电化学性质的材料应用铺平了道路。