Hughes Erik A B, Robinson Thomas E, Moakes Richard J A, Chipara Miruna, Grover Liam M
School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK.
Commun Chem. 2021 Oct 14;4(1):145. doi: 10.1038/s42004-021-00579-y.
Chemical gardens are an example of a chemobrionic system that typically result in abiotic macro-, micro- and nano- material architectures, with formation driven by complex out-of-equilibrium reaction mechanisms. From a technological perspective, controlling chemobrionic processes may hold great promise for the creation of novel, compositionally diverse and ultimately, useful materials and devices. In this work, we engineer an innovative custom-built liquid exchange unit that enables us to control the formation of tubular chemical garden structures grown from the interface between calcium loaded hydrogel and phosphate solution. We show that systematic displacement of phosphate solution with water (HO) can halt self-assembly, precisely control tube height and purify structures in situ. Furthermore, we demonstrate the fabrication of a heterogeneous chemobrionic composite material composed of aligned, high-aspect ratio calcium phosphate channels running through an otherwise dense matrix of poly(2-hydroxyethyl methacrylate) (pHEMA). Given that the principles we derive can be broadly applied to potentially control various chemobrionic systems, this work paves the way for fabricating multifunctional materials that may hold great potential in a variety of application areas, such as regenerative medicine, catalysis and microfluidics.
化学花园是一种化学仿生系统的实例,通常会产生非生物的宏观、微观和纳米材料结构,其形成由复杂的非平衡反应机制驱动。从技术角度来看,控制化学仿生过程可能为创造新型、成分多样且最终有用的材料和器件带来巨大希望。在这项工作中,我们设计了一个创新的定制液体交换单元,使我们能够控制从负载钙的水凝胶与磷酸盐溶液界面生长的管状化学花园结构的形成。我们表明,用水(H₂O)系统地置换磷酸盐溶液可以停止自组装、精确控制管高并原位纯化结构。此外,我们展示了一种由排列整齐、高纵横比的磷酸钙通道贯穿聚(甲基丙烯酸2-羟乙酯)(pHEMA)致密基质组成的异质化学仿生复合材料的制造。鉴于我们得出能广泛应用于潜在控制各种化学仿生系统的原理,这项工作为制造在再生医学、催化和微流体等各种应用领域可能具有巨大潜力的多功能材料铺平了道路。