Červenka Luděk, Melenovský Vojtěch, Husková Zuzana, Škaroupková Petra, Nishiyama Akira, Sadowski Janusz
Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
Clin Exp Pharmacol Physiol. 2015 Jul;42(7):795-807. doi: 10.1111/1440-1681.12419.
The detailed mechanisms determining the course of congestive heart failure (CHF) in hypertensive subjects with associated renal dysfunction remain unclear. In Ren-2 transgenic rats (TGR), a model of angiotensin II (ANG II)-dependent hypertension, CHF was induced by volume overload achieved by creation of the aorto-caval fistula (ACF). In these rats we investigated the putative pathophysiological contribution of epoxyeicosatrienoic acids (EETs) and compared it with the role of the renin-angiotensin system (RAS). We found that untreated ACF TGR exhibited marked intrarenal and myocardial deficiency of EETs and impairment of renal function. Chronic treatment of these rats with cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/L in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs, markedly improved survival rate, and increased renal blood flow, glomerular filtration rate and fractional sodium excretion, without altering RAS activity. Chronic angiotensin-converting enzyme inhibition (ACEi) with trandolapril, (6 mg/L in drinking water) improved survival rate even more, and also inhibited the development of renal dysfunction; these beneficial actions were associated with significant suppression of the vasoconstrictor/sodium retaining axis and further activation of the vasodilatory/natriuretic axis of the systemic and intrarenal RAS, without modifying tissue availability of biologically active fatty acid epoxides. In conclusion, these findings strongly suggest that chronic sEH inhibition and chronic treatment with ACEi, each of them altering a different vasoactive system, delay or even prevent the onset of decompensation of CHF in ACF TGR, probably by preventing the development of renal dysfunction.
高血压合并肾功能不全患者发生充血性心力衰竭(CHF)的详细机制仍不清楚。在肾素-2转基因大鼠(TGR)中,一种依赖血管紧张素II(ANG II)的高血压模型,通过建立主动脉-腔静脉瘘(ACF)导致容量超负荷,从而诱发CHF。在这些大鼠中,我们研究了环氧二十碳三烯酸(EETs)可能的病理生理作用,并将其与肾素-血管紧张素系统(RAS)的作用进行了比较。我们发现,未经治疗的ACF TGR表现出明显的肾内和心肌EETs缺乏以及肾功能损害。用顺式-4-[4-(3-金刚烷-1-基-脲基)环己氧基]苯甲酸(c-AUCB,饮用水中浓度为3 mg/L)对这些大鼠进行慢性治疗,c-AUCB是一种可溶性环氧化物水解酶(sEH)抑制剂,sEH通常会降解EETs,可增加肾内和心肌EETs,显著提高存活率,并增加肾血流量、肾小球滤过率和钠排泄分数,而不改变RAS活性。用群多普利(饮用水中浓度为6 mg/L)进行慢性血管紧张素转换酶抑制(ACEi)可进一步提高存活率,并抑制肾功能不全的发展;这些有益作用与显著抑制血管收缩/保钠轴以及进一步激活全身和肾内RAS的血管舒张/利钠轴有关,而不改变生物活性脂肪酸环氧化物的组织可用性。总之,这些发现强烈表明,慢性sEH抑制和ACEi慢性治疗,它们各自改变不同的血管活性系统,可能通过预防肾功能不全的发展,延缓甚至预防ACF TGR中CHF失代偿的发生。