ACS Nano. 2015 Jun 23;9(6):5884-92. doi: 10.1021/acsnano.5b02166. Epub 2015 May 21.
Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.
金属锂因其 3840 mAh g(-1) 的高能量密度而被认为是下一代电池中最有前途的阳极。然而,锂表面的极高反应性会引起与溶剂的寄生反应、污染和电解质中的穿梭活性物质,从而降低使用金属锂阳极的电池的性能。解决这个问题的一个有希望的方法是在锂金属表面应用薄的化学保护层。使用定制的超高真空集成沉积和表征系统,我们展示了在锂金属上直接沉积保护层的原子层沉积 (ALD),具有精湛的厚度控制。我们证明了一个 14nm 厚的 ALD Al2O3 层可以保护锂表面免受大气、硫和电解质暴露的腐蚀。我们使用 Li-S 电池作为测试系统,证明了在多达 100 个循环中,使用 ALD 保护的阳极组装的电池比使用裸露的锂金属阳极组装的电池具有更好的容量保持率。