Suppr超能文献

用于定制体内功能和心脏再生的受生理启发的心脏支架。

Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration.

作者信息

Kaiser Nicholas J, Coulombe Kareen L K

机构信息

Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.

出版信息

Biomed Mater. 2015 May 13;10(3):034003. doi: 10.1088/1748-6041/10/3/034003.

Abstract

Tissue engineering is well suited for the treatment of cardiac disease due to the limited regenerative capacity of native cardiac tissue and the loss of function associated with endemic cardiac pathologies, such as myocardial infarction and congenital heart defects. However, the physiological complexity of the myocardium imposes extensive requirements on tissue therapies intended for these applications. In recent years, the field of cardiac tissue engineering has been characterized by great innovation and diversity in the fabrication of engineered tissue scaffolds for cardiac repair and regeneration to address these problems. From early approaches that attempted only to deliver cardiac cells in a hydrogel vessel, significant progress has been made in understanding the role of each major component of cardiac living tissue constructs (namely cells, scaffolds, and signaling mechanisms) as they relate to mechanical, biological, and electrical in vivo performance. This improved insight, accompanied by modern material science techniques, allows for the informed development of complex scaffold materials that are optimally designed for cardiac applications. This review provides a background on cardiac physiology as it relates to critical cardiac scaffold characteristics, the degree to which common cardiac scaffold materials fulfill these criteria, and finally an overview of recent in vivo studies that have employed this type of approach.

摘要

由于天然心脏组织的再生能力有限以及与地方性心脏疾病(如心肌梗死和先天性心脏缺陷)相关的功能丧失,组织工程非常适合用于治疗心脏疾病。然而,心肌的生理复杂性对用于这些应用的组织疗法提出了广泛要求。近年来,心脏组织工程领域的特点是在制造用于心脏修复和再生的工程组织支架方面有了巨大的创新和多样性,以解决这些问题。从早期仅试图在水凝胶容器中递送心脏细胞的方法开始,在理解心脏活组织构建体的每个主要成分(即细胞、支架和信号传导机制)与体内机械、生物学和电学性能的关系方面已经取得了重大进展。这种更深入的认识,伴随着现代材料科学技术,使得能够明智地开发出针对心脏应用进行优化设计的复杂支架材料。本综述提供了与关键心脏支架特性相关的心脏生理学背景、常见心脏支架材料满足这些标准的程度,以及最后对采用这种方法的近期体内研究的概述。

相似文献

1
Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration.
Biomed Mater. 2015 May 13;10(3):034003. doi: 10.1088/1748-6041/10/3/034003.
3
Current state of fabrication technologies and materials for bone tissue engineering.
Acta Biomater. 2018 Oct 15;80:1-30. doi: 10.1016/j.actbio.2018.09.031. Epub 2018 Sep 22.
4
Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
Acta Biomater. 2017 Apr 1;52:81-91. doi: 10.1016/j.actbio.2016.12.009. Epub 2016 Dec 8.
5
Living cardiac patch: the elixir for cardiac regeneration.
Expert Opin Biol Ther. 2012 Dec;12(12):1623-40. doi: 10.1517/14712598.2012.721770. Epub 2012 Sep 6.
6
Three-dimensional scaffold-free microtissues engineered for cardiac repair.
J Mater Chem B. 2020 Sep 14;8(34):7571-7590. doi: 10.1039/d0tb01528h. Epub 2020 Jul 29.
7
Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications.
Int J Biol Macromol. 2020 Dec 1;164:2329-2357. doi: 10.1016/j.ijbiomac.2020.08.054. Epub 2020 Aug 12.
8
Bioengineering methods for myocardial regeneration.
Adv Drug Deliv Rev. 2016 Jan 15;96:195-202. doi: 10.1016/j.addr.2015.06.012. Epub 2015 Jul 4.
9
Conductive polymers for cardiac tissue engineering and regeneration.
J Biomed Mater Res B Appl Biomater. 2023 Nov;111(11):1979-1995. doi: 10.1002/jbm.b.35293. Epub 2023 Jun 12.
10
Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds.
Int J Biol Macromol. 2024 Mar;261(Pt 2):129924. doi: 10.1016/j.ijbiomac.2024.129924. Epub 2024 Feb 2.

引用本文的文献

2
Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors.
Microsyst Nanoeng. 2024 Jul 11;10:96. doi: 10.1038/s41378-024-00692-7. eCollection 2024.
3
Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte Differentiation.
ACS Appl Bio Mater. 2023 Jul 17;6(7):2860-2874. doi: 10.1021/acsabm.3c00303. Epub 2023 Jun 21.
4
Micropatterned fibrin scaffolds increase cardiomyocyte alignment and contractility for the fabrication of engineered myocardial tissue.
J Biomed Mater Res A. 2023 Sep;111(9):1309-1321. doi: 10.1002/jbm.a.37530. Epub 2023 Mar 18.
6
Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds, and Pharmacological Agents.
Iran J Pharm Res. 2021 Fall;20(4):467-496. doi: 10.22037/IJPR.2021.114730.15012.
7
Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine.
Bioelectricity. 2020 Jun 1;2(2):120-149. doi: 10.1089/bioe.2020.0021. Epub 2020 Jun 17.
8
Mechanical properties of cell sheets and spheroids: the link between single cells and complex tissues.
Biophys Rev. 2021 Jul 13;13(4):541-561. doi: 10.1007/s12551-021-00821-w. eCollection 2021 Aug.
10
Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries.
Pharmaceutics. 2021 Jul 7;13(7):1038. doi: 10.3390/pharmaceutics13071038.

本文引用的文献

1
Soft biological materials and their impact on cell function.
Soft Matter. 2007 Feb 14;3(3):299-306. doi: 10.1039/b610522j.
2
Alginate-Based Biomaterials for Regenerative Medicine Applications.
Materials (Basel). 2013 Mar 26;6(4):1285-1309. doi: 10.3390/ma6041285.
3
Pathomechanisms in heart failure: the contractile connection.
J Muscle Res Cell Motil. 2015 Feb;36(1):47-60. doi: 10.1007/s10974-014-9395-8. Epub 2014 Nov 7.
4
Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart.
ACS Nano. 2014 Oct 28;8(10):9822-32. doi: 10.1021/nn503693h. Epub 2014 Sep 29.
5
Deaths: final data for 2010.
Natl Vital Stat Rep. 2013 May 8;61(4):1-117.
6
Capillary force lithography for cardiac tissue engineering.
J Vis Exp. 2014 Jun 10(88):50039. doi: 10.3791/50039.
7
3D biofabrication strategies for tissue engineering and regenerative medicine.
Annu Rev Biomed Eng. 2014 Jul 11;16:247-76. doi: 10.1146/annurev-bioeng-071813-105155. Epub 2014 May 29.
8
Heart regeneration with engineered myocardial tissue.
Annu Rev Biomed Eng. 2014 Jul 11;16:1-28. doi: 10.1146/annurev-bioeng-071812-152344. Epub 2014 Apr 24.
9
Controlling the structural and functional anisotropy of engineered cardiac tissues.
Biofabrication. 2014 Jun;6(2):024109-24109. doi: 10.1088/1758-5082/6/2/024109. Epub 2014 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验