Suppr超能文献

主细胞周期磷酸酶Cdc14的瞬时失活导致酿酒酵母二倍体细胞中的基因组不稳定。

The Transient Inactivation of the Master Cell Cycle Phosphatase Cdc14 Causes Genomic Instability in Diploid Cells of Saccharomyces cerevisiae.

作者信息

Quevedo Oliver, Ramos-Pérez Cristina, Petes Thomas D, Machín Félix

机构信息

Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, 38010 Santa Cruz de Tenerife, Spain.

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710

出版信息

Genetics. 2015 Jul;200(3):755-69. doi: 10.1534/genetics.115.177626. Epub 2015 May 12.

Abstract

Genomic instability is a common feature found in cancer cells . Accordingly, many tumor suppressor genes identified in familiar cancer syndromes are involved in the maintenance of the stability of the genome during every cell division and are commonly referred to as caretakers. Inactivating mutations and epigenetic silencing of caretakers are thought to be the most important mechanisms that explain cancer-related genome instability. However, little is known of whether transient inactivation of caretaker proteins could trigger genome instability and, if so, what types of instability would occur. In this work, we show that a brief and reversible inactivation, during just one cell cycle, of the key phosphatase Cdc14 in the model organism Saccharomyces cerevisiae is enough to result in diploid cells with multiple gross chromosomal rearrangements and changes in ploidy. Interestingly, we observed that such transient loss yields a characteristic fingerprint whereby trisomies are often found in small-sized chromosomes, and gross chromosome rearrangements, often associated with concomitant loss of heterozygosity, are detected mainly on the ribosomal DNA-bearing chromosome XII. Taking into account the key role of Cdc14 in preventing anaphase bridges, resetting replication origins, and controlling spindle dynamics in a well-defined window within anaphase, we speculate that the transient loss of Cdc14 activity causes cells to go through a single mitotic catastrophe with irreversible consequences for the genome stability of the progeny.

摘要

基因组不稳定是癌细胞的一个常见特征。因此,在常见癌症综合征中鉴定出的许多肿瘤抑制基因都参与了在每次细胞分裂过程中维持基因组的稳定性,通常被称为基因组守护者。基因组守护者的失活突变和表观遗传沉默被认为是解释癌症相关基因组不稳定的最重要机制。然而,对于基因组守护者蛋白的瞬时失活是否会引发基因组不稳定,以及如果会引发,会发生何种类型的不稳定,我们却知之甚少。在这项研究中,我们发现,在模式生物酿酒酵母中,关键磷酸酶Cdc14仅在一个细胞周期内发生短暂且可逆的失活,就足以导致二倍体细胞出现多个严重的染色体重排和倍性变化。有趣的是,我们观察到这种瞬时缺失产生了一种特征性的指纹图谱,即三体往往出现在小尺寸染色体上,而主要在携带核糖体DNA的第十二号染色体上检测到通常与杂合性同时丧失相关的严重染色体重排。考虑到Cdc14在防止后期桥形成、重置复制起点以及在后期的一个明确窗口内控制纺锤体动力学方面的关键作用,我们推测Cdc14活性的瞬时丧失会导致细胞经历一次单一的有丝分裂灾难,对后代的基因组稳定性产生不可逆转的影响。

相似文献

2
Cdc14 phosphatase: warning, no delay allowed for chromosome segregation!
Curr Genet. 2016 Feb;62(1):7-13. doi: 10.1007/s00294-015-0502-1. Epub 2015 Jun 27.
3
Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14466-71. doi: 10.1073/pnas.0900190106. Epub 2009 Aug 7.
4
Cdc15 is required for spore morphogenesis independently of Cdc14 in Saccharomyces cerevisiae.
Genetics. 2007 Sep;177(1):281-93. doi: 10.1534/genetics.107.076133. Epub 2007 Jul 29.
5
Novel role for Cdc14 sequestration: Cdc14 dephosphorylates factors that promote DNA replication.
Mol Cell Biol. 2007 Feb;27(3):842-53. doi: 10.1128/MCB.01069-06. Epub 2006 Nov 20.
6
Cdc14 phosphatase resolves the rDNA segregation delay.
Nat Cell Biol. 2004 Jun;6(6):473-5. doi: 10.1038/ncb0604-473.
8
The Cdk/cDc14 module controls activation of the Yen1 holliday junction resolvase to promote genome stability.
Mol Cell. 2014 Apr 10;54(1):80-93. doi: 10.1016/j.molcel.2014.02.012. Epub 2014 Mar 13.
9
Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability.
Mol Cell. 2014 Apr 10;54(1):94-106. doi: 10.1016/j.molcel.2014.02.011. Epub 2014 Mar 13.
10
Functions of the mitotic B-type cyclins CLB1, CLB2, and CLB3 at mitotic exit antagonized by the CDC14 phosphatase.
Fungal Genet Biol. 2011 Oct;48(10):966-78. doi: 10.1016/j.fgb.2011.07.001. Epub 2011 Jul 19.

引用本文的文献

2
The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control.
Int J Mol Sci. 2020 Jan 21;21(3):709. doi: 10.3390/ijms21030709.
4
Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response.
Cell Stress. 2019 Feb 21;3(3):70-85. doi: 10.15698/cst2019.03.178.
5
Delayed Encounter of Parental Genomes Can Lead to Aneuploidy in .
Genetics. 2018 Jan;208(1):139-151. doi: 10.1534/genetics.117.300289. Epub 2017 Nov 17.
6
Cdc14 phosphatase: warning, no delay allowed for chromosome segregation!
Curr Genet. 2016 Feb;62(1):7-13. doi: 10.1007/s00294-015-0502-1. Epub 2015 Jun 27.

本文引用的文献

2
Genome-wide high-resolution mapping of chromosome fragile sites in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2014 May 27;111(21):E2210-8. doi: 10.1073/pnas.1406847111. Epub 2014 May 5.
3
BCCIP suppresses tumor initiation but is required for tumor progression.
Cancer Res. 2013 Dec 1;73(23):7122-33. doi: 10.1158/0008-5472.CAN-13-1766. Epub 2013 Oct 21.
4
Causes of genome instability.
Annu Rev Genet. 2013;47:1-32. doi: 10.1146/annurev-genet-111212-133232. Epub 2013 Jul 31.
5
Enhancement of microhomology-mediated genomic rearrangements by transient loss of mouse Bloom syndrome helicase.
Genome Res. 2013 Sep;23(9):1462-73. doi: 10.1101/gr.152744.112. Epub 2013 Aug 1.
6
Aneuploidy underlies a multicellular phenotypic switch.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12367-72. doi: 10.1073/pnas.1301047110. Epub 2013 Jun 28.
7
High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV.
PLoS Genet. 2013 Apr;9(4):e1003434. doi: 10.1371/journal.pgen.1003434. Epub 2013 Apr 4.
8
Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation.
Mol Biol Cell. 2012 Dec;23(23):4515-25. doi: 10.1091/mbc.E12-04-0260. Epub 2012 Oct 10.
9
Reciprocal uniparental disomy in yeast.
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9947-52. doi: 10.1073/pnas.1207736109. Epub 2012 Jun 4.
10
Mitotic spindle form and function.
Genetics. 2012 Apr;190(4):1197-224. doi: 10.1534/genetics.111.128710.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验