Suppr超能文献

复杂的抑制性微电路在视觉阈值附近调节视网膜信号。

Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.

作者信息

Grimes William N, Zhang Jun, Tian Hua, Graydon Cole W, Hoon Mrinalini, Rieke Fred, Diamond Jeffrey S

机构信息

Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland; Department of Physiology and Biophysics, Howard Hughes Medical Institute at the University of Washington, Seattle, Washington; and.

Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland;

出版信息

J Neurophysiol. 2015 Jul;114(1):341-53. doi: 10.1152/jn.00017.2015. Epub 2015 May 13.

Abstract

Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABA(A)Rs are enriched at one synapse while more slowly activating GABA(C)Rs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca(2+)-activated K(+) channels help to regulate GABA release from A17 varicosities and limit GABA(C)R activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night.

摘要

神经元微电路是涉及两个或更多神经元的小型局部信号基序,是大脑中信号处理和计算的基础。神经元内的区室化信号传导可能使其能够参与多个独立的微电路。哺乳动物视网膜中的每个A17无长突细胞在其树突内包含数百个独立运作以调节视网膜内层前馈信号的突触反馈微电路。这些微电路中的每一个都包含一个小的(<1μm)突触曲张体,其通常从突触前视杆双极细胞(RBC)接收一个兴奋性突触,并将两个相互抑制性突触返回到同一个RBC终末上。来自A17的反馈抑制塑造了从RBC到AII的前馈信号,AII是介导夜视的电路的关键组成部分。在这里,我们表明从A17到RBC的两个抑制性突触表达动力学上不同的GABA受体群体:快速激活的GABA(A)Rs在一个突触处富集,而激活较慢的GABA(C)Rs在另一个突触处富集。解剖学和电生理学数据表明,电压门控(Cav)通道和Ca(2+)激活的K(+)通道的大分子复合物有助于调节A17曲张体释放GABA,并在某些条件下限制GABA(C)R的激活。最后,我们发现选择性消除A17介导的反馈抑制会降低在前馈通路(即AII无长突细胞)中记录的对暗光闪烁反应的信噪比。我们得出结论,A17介导的反馈抑制提高了视觉阈值附近RBC-AII传递的信噪比,从而提高了夜间视觉敏感性。

相似文献

1
Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.
J Neurophysiol. 2015 Jul;114(1):341-53. doi: 10.1152/jn.00017.2015. Epub 2015 May 13.
2
Mechanisms underlying lateral GABAergic feedback onto rod bipolar cells in rat retina.
J Neurosci. 2010 Feb 10;30(6):2330-9. doi: 10.1523/JNEUROSCI.5574-09.2010.
3
BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina.
Nat Neurosci. 2009 May;12(5):585-92. doi: 10.1038/nn.2302. Epub 2009 Apr 12.
5
Morphological and physiological properties of the A17 amacrine cell of the rat retina.
Vis Neurosci. 2000 Sep-Oct;17(5):769-80. doi: 10.1017/s0952523800175108.
6
Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors.
Nature. 2006 Oct 12;443(7112):705-8. doi: 10.1038/nature05123. Epub 2006 Oct 1.
8
Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina.
J Neurophysiol. 1999 Jun;81(6):2923-36. doi: 10.1152/jn.1999.81.6.2923.
9
Retinal synaptic pathways underlying the response of the rabbit local edge detector.
J Neurophysiol. 2010 May;103(5):2757-69. doi: 10.1152/jn.00987.2009. Epub 2010 Mar 24.
10
Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling.
J Neurosci. 2019 Jan 23;39(4):627-650. doi: 10.1523/JNEUROSCI.2267-18.2018. Epub 2018 Nov 20.

引用本文的文献

2
Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina.
iScience. 2024 May 7;27(6):109920. doi: 10.1016/j.isci.2024.109920. eCollection 2024 Jun 21.
3
Trophoblast glycoprotein is required for efficient synaptic vesicle exocytosis from retinal rod bipolar cells.
Front Cell Neurosci. 2023 Nov 30;17:1306006. doi: 10.3389/fncel.2023.1306006. eCollection 2023.
4
Sensory deprivation arrests cellular and synaptic development of the night-vision circuitry in the retina.
Curr Biol. 2023 Oct 23;33(20):4415-4429.e3. doi: 10.1016/j.cub.2023.08.087. Epub 2023 Sep 27.
5
Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells.
Nat Commun. 2022 Sep 26;13(1):5575. doi: 10.1038/s41467-022-32761-8.
6
Calcium Channels in Retinal Function and Disease.
Annu Rev Vis Sci. 2022 Sep 15;8:53-77. doi: 10.1146/annurev-vision-012121-111325. Epub 2022 Jun 1.
7
The Retina: A Window into the Brain.
Cells. 2021 Nov 23;10(12):3269. doi: 10.3390/cells10123269.
8
Dendro-somatic synaptic inputs to ganglion cells contradict receptive field and connectivity conventions in the mammalian retina.
Curr Biol. 2022 Jan 24;32(2):315-328.e4. doi: 10.1016/j.cub.2021.11.005. Epub 2021 Nov 24.
9
Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function.
Curr Biol. 2021 Oct 11;31(19):4314-4326.e5. doi: 10.1016/j.cub.2021.07.059. Epub 2021 Aug 24.

本文引用的文献

3
BK channels mediate pathway-specific modulation of visual signals in the in vivo mouse retina.
J Neurosci. 2012 Apr 4;32(14):4861-6. doi: 10.1523/JNEUROSCI.4654-11.2012.
4
Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells.
Nat Neurosci. 2011 Oct 23;14(12):1555-61. doi: 10.1038/nn.2945.
5
How inhibition shapes cortical activity.
Neuron. 2011 Oct 20;72(2):231-43. doi: 10.1016/j.neuron.2011.09.027.
6
A synaptic mechanism for retinal adaptation to luminance and contrast.
J Neurosci. 2011 Jul 27;31(30):11003-15. doi: 10.1523/JNEUROSCI.2631-11.2011.
7
Wiring specificity in the direction-selectivity circuit of the retina.
Nature. 2011 Mar 10;471(7337):183-8. doi: 10.1038/nature09818.
8
Nanodomain control of exocytosis is responsible for the signaling capability of a retinal ribbon synapse.
J Neurosci. 2010 Sep 8;30(36):11885-95. doi: 10.1523/JNEUROSCI.1415-10.2010.
10
Mechanisms underlying lateral GABAergic feedback onto rod bipolar cells in rat retina.
J Neurosci. 2010 Feb 10;30(6):2330-9. doi: 10.1523/JNEUROSCI.5574-09.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验