Suppr超能文献

众多但罕见:幻方探索

Numerous but rare: an exploration of magic squares.

作者信息

Kitajima Akimasa, Kikuchi Macoto

机构信息

Research and Legislative Reference Bureau, National Diet Library, Chiyoda-ku, Tokyo, Japan; Department of Physics, Graduate School of Science, Osaka university, Toyonaka, Osaka, Japan.

Large-Scale Computational Science Division, Cybermedia center, Osaka University, Toyonaka, Osaka, Japan; Department of Physics, Graduate School of Science, Osaka university, Toyonaka, Osaka, Japan.

出版信息

PLoS One. 2015 May 14;10(5):e0125062. doi: 10.1371/journal.pone.0125062. eCollection 2015.

Abstract

How rare are magic squares? So far, the exact number of magic squares of order n is only known for n ≤ 5. For larger squares, we need statistical approaches for estimating the number. For this purpose, we formulated the problem as a combinatorial optimization problem and applied the Multicanonical Monte Carlo method (MMC), which has been developed in the field of computational statistical physics. Among all the possible arrangements of the numbers 1; 2, …, n(2) in an n × n square, the probability of finding a magic square decreases faster than the exponential of n. We estimated the number of magic squares for n ≤ 30. The number of magic squares for n = 30 was estimated to be 6.56(29) × 10(2056) and the corresponding probability is as small as 10(-212). Thus the MMC is effective for counting very rare configurations.

摘要

幻方有多罕见?到目前为止,仅知道n≤5时n阶幻方的确切数量。对于更大的方阵,我们需要用统计方法来估计数量。为此,我们将该问题表述为一个组合优化问题,并应用了在计算统计物理领域中发展起来的多正则蒙特卡罗方法(MMC)。在n×n方阵中数字1、2、…、n²的所有可能排列中,找到幻方的概率下降速度比n的指数还要快。我们估计了n≤30时幻方的数量。n = 30时幻方的数量估计为6.56(29)×10²⁰⁵⁶,相应的概率小至10⁻²¹²。因此,MMC对于计算非常罕见的构型很有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/961d/4431883/3b0e248a2757/pone.0125062.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验