Suppr超能文献

稀有事件抽样分析揭示了遗传密码的适应性景观。

Rare-event sampling analysis uncovers the fitness landscape of the genetic code.

机构信息

Graduate School of Sciences, The University of Tokyo, Hongo, Tokyo, Japan.

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.

出版信息

PLoS Comput Biol. 2023 Apr 17;19(4):e1011034. doi: 10.1371/journal.pcbi.1011034. eCollection 2023 Apr.

Abstract

The genetic code refers to a rule that maps 64 codons to 20 amino acids. Nearly all organisms, with few exceptions, share the same genetic code, the standard genetic code (SGC). While it remains unclear why this universal code has arisen and been maintained during evolution, it may have been preserved under selection pressure. Theoretical studies comparing the SGC and numerically created hypothetical random genetic codes have suggested that the SGC has been subject to strong selection pressure for being robust against translation errors. However, these prior studies have searched for random genetic codes in only a small subspace of the possible code space due to limitations in computation time. Thus, how the genetic code has evolved, and the characteristics of the genetic code fitness landscape, remain unclear. By applying multicanonical Monte Carlo, an efficient rare-event sampling method, we efficiently sampled random codes from a much broader random ensemble of genetic codes than in previous studies, estimating that only one out of every 1020 random codes is more robust than the SGC. This estimate is significantly smaller than the previous estimate, one in a million. We also characterized the fitness landscape of the genetic code that has four major fitness peaks, one of which includes the SGC. Furthermore, genetic algorithm analysis revealed that evolution under such a multi-peaked fitness landscape could be strongly biased toward a narrow peak, in an evolutionary path-dependent manner.

摘要

遗传密码是指将 64 个密码子映射到 20 种氨基酸的规则。除了少数例外,几乎所有的生物体都共享相同的遗传密码,即标准遗传密码(SGC)。虽然目前尚不清楚为什么这种普遍的密码在进化过程中出现并得以维持,但它可能是在选择压力下保存下来的。理论研究比较了 SGC 和数值上创建的假设随机遗传密码,表明 SGC 受到强大的选择压力,因为它具有很强的抗翻译错误能力。然而,由于计算时间的限制,这些先前的研究只在可能的代码空间的一个小子空间中搜索随机遗传代码。因此,遗传密码是如何进化的,以及遗传密码适应度景观的特征,仍然不清楚。通过应用多峰蒙特卡罗,一种有效的稀有事件抽样方法,我们从比以前的研究中更广泛的随机遗传代码集合中有效地抽样了随机代码,估计只有每 1020 个随机代码中才有一个比 SGC 更健壮。这一估计值明显小于之前的估计值,即一百万分之一。我们还对遗传密码的适应度景观进行了特征描述,该景观有四个主要的适应度峰,其中一个包括 SGC。此外,遗传算法分析表明,在这样一个多峰适应度景观下的进化可能会以一种进化路径依赖的方式强烈偏向于一个狭窄的峰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb98/10138212/4de85e592ef8/pcbi.1011034.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验