Suppr超能文献

状态空间模型的格兰杰因果关系。

Granger causality for state-space models.

作者信息

Barnett Lionel, Seth Anil K

机构信息

Sackler Centre for Consciousness Science, School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):040101. doi: 10.1103/PhysRevE.91.040101. Epub 2015 Apr 23.

Abstract

Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations-commonplace in application domains as diverse as climate science, econometrics, and the neurosciences-induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

摘要

长期以来,格兰杰因果关系一直是推断广泛复杂物理系统中随机变量之间因果相互作用的一种重要方法。然而,人们已经认识到,数据中的移动平均(MA)成分给格兰杰因果分析带来了严重干扰,而这种分析通常是通过自回归(AR)建模来进行的。我们通过证明可以从状态空间(SS)模型的参数简单而有效地计算格兰杰因果关系来解决这个问题。由于SS模型等同于自回归移动平均模型,以这种方式估计的格兰杰因果关系不会因MA成分的存在而降低。当数据经过滤波、下采样、带噪声观测或作为高维过程的子过程时,这一点尤为重要,因为所有这些操作——在气候科学、计量经济学和神经科学等不同应用领域中都很常见——都会引入一个MA成分。我们展示了如何通过求解离散代数黎卡提方程,直接从SS模型参数计算时域和频域中的条件和无条件格兰杰因果关系。数值模拟表明,由此得出的格兰杰因果关系估计器比AR估计器具有更大的统计功效和更小的偏差。我们还讨论了SS方法如何有助于放宽当前AR方法所基于的线性、平稳性和同方差性假设,从而在格兰杰因果分析中开辟了潜在的重要新研究领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验