Tang Ying, Yuan Ruoshi, Chen Jianhong, Ao Ping
Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
Key Laboratory of Systems Biomedicine Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042108. doi: 10.1103/PhysRevE.91.042108. Epub 2015 Apr 7.
Bridging equilibrium and nonequilibrium statistical physics attracts sustained interest. Hallmarks of nonequilibrium systems include a breakdown of detailed balance, and an absence of a priori potential function corresponding to the Boltzmann-Gibbs distribution, without which classical equilibrium thermodynamical quantities could not be defined. Here, we construct dynamically the potential function through decomposing the system into a dissipative part and a conservative part, and develop a nonequilibrium theory by defining thermodynamical quantities based on the potential function. Concepts for equilibrium can thus be naturally extended to nonequilibrium steady state. We elucidate this procedure explicitly in a class of time-dependent linear diffusive systems without mathematical ambiguity. We further obtain the exact work distribution for an arbitrary control parameter, and work equalities connecting nonequilibrium steady states. Our results provide a direct generalization on Jarzynski equality and Crooks fluctuation theorem to systems without detailed balance.
连接平衡与非平衡统计物理一直备受关注。非平衡系统的特征包括细致平衡的破坏,以及不存在对应于玻尔兹曼 - 吉布斯分布的先验势函数,没有这个势函数,经典平衡热力学量就无法定义。在此,我们通过将系统分解为耗散部分和保守部分来动态构建势函数,并基于该势函数定义热力学量来发展一种非平衡理论。这样,平衡的概念就能自然地扩展到非平衡稳态。我们在一类无数学歧义的含时线性扩散系统中明确阐释了这一过程。我们还得到了任意控制参数下的精确功分布,以及连接非平衡稳态的功等式。我们的结果将雅津斯基等式和克鲁克斯涨落定理直接推广到了不存在细致平衡的系统。