Suppr超能文献

Granular chains with soft boundaries: Slowing the transition to quasiequilibrium.

作者信息

Przedborski Michelle, Harroun Thad A, Sen Surajit

机构信息

Department of Physics, Brock University, St. Catharines, Ontario, Canada L2S 3A1.

Department of Physics, State University of New York, Buffalo, New York 14260-1500, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042207. doi: 10.1103/PhysRevE.91.042207. Epub 2015 Apr 30.

Abstract

We present here a detailed numerical study of the dynamical behavior of "soft" uncompressed grains in a granular chain where the grains interact via the intrinsically nonlinear Hertz force. It is well known that such a chain supports the formation of solitary waves (SWs). Here, however, the system response to the material properties of the grains and boundaries is explored further. In particular, we examine the details of the transition of the system from a SW phase to an equilibrium-like (or quasiequilibrium) phase, and for this reason we ignore the effects of dissipation in this study. We find that the soft walls slow the reflection of SWs at the boundaries of the system, which in turn slows the journey to quasiequilibrium. Moreover, the increased grain-wall compression as the boundaries are softened results in fewer average grain-grain contacts at any given time in the quasiequilibrium phase. These effects lead to increased kinetic energy fluctuations in the short term in softer systems. We conclude with a toy model that exploits the results of soft-wall systems. This toy model supports the formation of breather-like entities and may therefore be useful for localizing energy in desired places in the granular chain.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验