Jin Yuliang, Charbonneau Patrick
Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sezione di Roma I, IPFC-CNR, Piazzale Aldo Moro 2, I-00185 Roma, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042313. doi: 10.1103/PhysRevE.91.042313. Epub 2015 Apr 27.
The random Lorentz gas (RLG) is a minimal model for transport in heterogeneous media. Upon increasing the obstacle density, it exhibits a growing subdiffusive transport regime and then a dynamical arrest. Here, we study the dimensional dependence of the dynamical arrest, which can be mapped onto the void percolation transition for Poisson-distributed point obstacles. We numerically determine the arrest in dimensions d=2-6. Comparison of the results with standard mode-coupling theory reveals that the dynamical theory prediction grows increasingly worse with d. In an effort to clarify the origin of this discrepancy, we relate the dynamical arrest in the RLG to the dynamic glass transition of the infinite-range Mari-Kurchan-model glass former. Through a mixed static and dynamical analysis, we then extract an improved dimensional scaling form as well as a geometrical upper bound for the arrest. The results suggest that understanding the asymptotic behavior of the random Lorentz gas may be key to surmounting fundamental difficulties with the mode-coupling theory of glasses.
随机洛伦兹气体(RLG)是用于研究非均匀介质中输运现象的一个最小模型。随着障碍物密度的增加,它呈现出越来越明显的亚扩散输运状态,随后出现动力学停滞。在此,我们研究动力学停滞的维度依赖性,它可映射到泊松分布的点障碍物的空隙渗流转变上。我们通过数值方法确定了二维至六维空间中的停滞情况。将结果与标准模式耦合理论进行比较后发现,动力学理论预测随着维度d的增加而越来越不准确。为了阐明这种差异的根源,我们将RLG中的动力学停滞与无限范围的Mari-Kurchan模型玻璃形成体的动态玻璃转变联系起来。通过静态和动态相结合的分析,我们进而提取出一种改进的维度标度形式以及停滞的几何上限。结果表明,理解随机洛伦兹气体的渐近行为可能是克服玻璃模式耦合理论基本困难的关键。