Suppr超能文献

随机分层流中广义高斯聚合物结构的动力学

Dynamics of generalized Gaussian polymeric structures in random layered flows.

作者信息

Katyal Divya, Kant Rama

机构信息

Department of Chemistry, University of Delhi, Delhi 110007, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042602. doi: 10.1103/PhysRevE.91.042602. Epub 2015 Apr 30.

Abstract

We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the Matheron-de Marsily model for the random layered flow. The expression for the average square displacement (ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal noise and the external random flow. Although the formalism is valid for branched polymers with various complex topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of the topology (the number and length of branches for stars and the number of generations for dendrimers) on the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity, persistence flow length, and flow exponent α. Our analysis shows two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime, while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the value of α, the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure.

摘要

我们针对存在随机流的具有任意拓扑结构的柔性支化聚合物的动力学,开发了一种形式体系。这是通过采用广义高斯结构(GGS)方法以及用于随机分层流的马瑟隆 - 德马西利模型来实现的。在此类流中获得了GGS质心的平均平方位移(ASD)的表达式。平均过程是对热噪声和外部随机流两者进行的。尽管该形式体系对具有各种复杂拓扑结构的支化聚合物均有效,但我们在此主要关注柔性星形聚合物和树枝状聚合物的动力学。我们分析了拓扑结构(星形聚合物的分支数量和长度以及树枝状聚合物的代数)在外部流影响下对动力学的作用,外部流的特征由其均方根速度、持续流长度和流动指数α来描述。我们的分析显示了两种反常幂律 regime,即亚扩散(中间时间聚合物拉伸和流动诱导扩散)和超扩散(长时间流动诱导扩散)。GGS拓扑结构的影响在中间时间 regime 中得以揭示,而长时间 regime 仅微弱地依赖于聚合物的拓扑结构。随着α值的减小,ASD的幅度减小,而在两个时间 regime 中ASD的时间指数均增大。此外,随着聚合物结构总质量的增加,ASD的幅度和转变时间(从亚扩散 regime 到超扩散 regime)均增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验