De Nigris Sarah, Leoncini Xavier
Department of Mathematics and Namur Center for Complex Systems-naXys, University of Namur, 8 rempart de la Vierge 5000 Namur, Belgium.
Aix Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042809. doi: 10.1103/PhysRevE.91.042809. Epub 2015 Apr 27.
The influence of networks topology on collective properties of dynamical systems defined upon it is studied in the thermodynamic limit. A network model construction scheme is proposed where the number of links and the average eccentricity are controlled. This is done by rewiring links of a regular one-dimensional chain according to a probability p within a specific range r that can depend on the number of vertices N. We compute the thermodynamical behavior of a system defined on the network, the XY-rotors model, and monitor how it is affected by the topological changes. We identify the network effective dimension d as a crucial parameter: topologies with d<2 exhibit no phase transitions, while topologies with d>2 display a second-order phase transition. Topologies with d=2 exhibit states characterized by infinite susceptibility and macroscopic chaotic, turbulent dynamical behavior. These features are also captured by d in the finite size context.
在热力学极限下研究了网络拓扑对定义在其上的动力学系统集体性质的影响。提出了一种网络模型构建方案,其中链路数量和平均偏心率受到控制。这是通过根据概率(p)在特定范围(r)(其可能取决于顶点数量(N))内重新连接规则一维链的链路来实现的。我们计算定义在该网络上的系统(XY转子模型)的热力学行为,并监测其如何受到拓扑变化的影响。我们将网络有效维度(d)确定为一个关键参数:(d<2)的拓扑不表现出相变,而(d>2)的拓扑显示出二阶相变。(d = 2)的拓扑表现出具有无限磁化率和宏观混沌、湍流动力学行为的状态。在有限尺寸情况下,这些特征也由(d)捕获。