Suppr超能文献

一般耦合非线性薛定谔方程的亮、暗及混合矢量孤子解

Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrödinger equations.

作者信息

Agalarov Agalar, Zhulego Vladimir, Gadzhimuradov Telman

机构信息

National Research Centre "Kurchatov Institute", Moscow, Russia.

Amirkhanov Institute of Physics Dagestan Scientific Centre, Russian Academy of Science, Makhachkala, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042909. doi: 10.1103/PhysRevE.91.042909. Epub 2015 Apr 17.

Abstract

The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.

摘要

提出了具有四波混频项的一般耦合非线性薛定谔(GCNLS)方程的约化过程。结果表明,GCNLS系统等价于著名的可积的马纳科夫和马汉科夫U(n,m)向量模型族。这种等价性使我们能够构造亮-亮和暗-暗孤子以及具有非常规动力学的准呼吸子-暗解:第一个分量的密度在空间和时间上振荡,而第二个分量的密度则不然。还研究了孤子的碰撞特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验