Agalarov Agalar, Zhulego Vladimir, Gadzhimuradov Telman
National Research Centre "Kurchatov Institute", Moscow, Russia.
Amirkhanov Institute of Physics Dagestan Scientific Centre, Russian Academy of Science, Makhachkala, Russia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042909. doi: 10.1103/PhysRevE.91.042909. Epub 2015 Apr 17.
The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.
提出了具有四波混频项的一般耦合非线性薛定谔(GCNLS)方程的约化过程。结果表明,GCNLS系统等价于著名的可积的马纳科夫和马汉科夫U(n,m)向量模型族。这种等价性使我们能够构造亮-亮和暗-暗孤子以及具有非常规动力学的准呼吸子-暗解:第一个分量的密度在空间和时间上振荡,而第二个分量的密度则不然。还研究了孤子的碰撞特性。