Ozawa Misaki, Kob Walter, Ikeda Atsushi, Miyazaki Kunimasa
Institute of Physics, University of Tsukuba, Tsukuba 305-8571, Japan; Department of Physics, Nagoya University, Nagoya 464-8602, Japan;
Laboratoire Charles Coulomb, UMR 5221, University of Montpellier and CNRS, 34095 Montpellier, France; and
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6914-9. doi: 10.1073/pnas.1500730112. Epub 2015 May 14.
We use computer simulations to study the thermodynamic properties of a glass-former in which a fraction c of the particles has been permanently frozen. By thermodynamic integration, we determine the Kauzmann, or ideal glass transition, temperature [Formula: see text] at which the configurational entropy vanishes. This is done without resorting to any kind of extrapolation, i.e., [Formula: see text] is indeed an equilibrium property of the system. We also measure the distribution function of the overlap, i.e., the order parameter that signals the glass state. We find that the transition line obtained from the overlap coincides with that obtained from the thermodynamic integration, thus showing that the two approaches give the same transition line. Finally, we determine the geometrical properties of the potential energy landscape, notably the T- and c dependence of the saddle index, and use these properties to obtain the dynamic transition temperature [Formula: see text]. The two temperatures [Formula: see text] and [Formula: see text] cross at a finite value of c and indicate the point at which the glass transition line ends. These findings are qualitatively consistent with the scenario proposed by the random first-order transition theory.
我们使用计算机模拟来研究一种玻璃形成体的热力学性质,其中有分数为(c)的粒子被永久冻结。通过热力学积分,我们确定了构型熵消失时的考兹曼温度(即理想玻璃化转变温度)(T_K)。这一过程无需借助任何外推法,也就是说,(T_K)确实是该系统的一个平衡性质。我们还测量了重叠分布函数,即标志玻璃态的序参量。我们发现,由重叠得到的转变线与由热力学积分得到的转变线重合,这表明这两种方法给出了相同的转变线。最后,我们确定了势能面的几何性质,特别是鞍点指数对温度(T)和分数(c)的依赖关系,并利用这些性质得到动力学转变温度(T_d)。两个温度(T_K)和(T_d)在(c)的一个有限值处相交,表明玻璃化转变线结束的点。这些发现与随机一级转变理论提出的情景在定性上是一致的。