Lee Young Seok, Hwang Sun Goo, Kim Jin Ki, Park Tae Hwan, Kim Young Rae, Myeong Ho Sung, Kwon Kang, Jang Cheol Seong, Noh Yun Hee, Kim Sung Young
Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Republic of Korea.
Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea.
Cancer Genomics Proteomics. 2015 May-Jun;12(3):153-66.
BACKGROUND/AIM: Despite great effort to elucidate the process of acquired gefitinib resistance (AGR) in order to develop successful chemotherapy, the precise mechanisms and genetic factors of such resistance have yet to be elucidated.
We performed a cross-platform meta-analysis of three publically available microarray datasets related to cancer with AGR. For the top 100 differentially expressed genes (DEGs), we clustered functional modules of hub genes in a gene co-expression network and a protein-protein interaction network. We conducted a weighted correlation network analysis of total DEGs in microarray dataset GSE 34228. The identified DEGs were functionally enriched by Gene Ontology (GO) function and KEGG pathway.
We identified a total of 1,033 DEGs (510 up-regulated, 523 down-regulated, and 109 novel genes). Among the top 100 up- or down-regulated DEGs, many genes were found in different types of cancers and tumors. Through integrative analysis of two systemic networks, we selected six hub DEGs (Pre-B-cell leukemia homeobox1, Transient receptor potential cation channel subfamily C member 1, AXL receptor tyrosine kinase, S100 calcium binding protein A9, S100 calcium binding protein A8, and Nucleotide-binding oligomerization domain containing 2) associated with calcium homeostasis and signaling, apoptosis, transcriptional regulation, or chemoresistance. We confirmed a correlation of expression of these genes in the microarray dataset.
Our study may lead to comprehensive insights into the complex mechanism of AGR and to novel gene expression signatures useful for further clinical studies.
背景/目的:尽管为阐明获得性吉非替尼耐药(AGR)过程付出了巨大努力以开发成功的化疗方法,但这种耐药的确切机制和遗传因素仍有待阐明。
我们对三个公开可用的与AGR相关的癌症微阵列数据集进行了跨平台荟萃分析。对于前100个差异表达基因(DEG),我们在基因共表达网络和蛋白质-蛋白质相互作用网络中对枢纽基因的功能模块进行了聚类。我们对微阵列数据集GSE 34228中的全部DEG进行了加权相关网络分析。通过基因本体(GO)功能和KEGG通路对鉴定出的DEG进行功能富集。
我们共鉴定出1033个DEG(510个上调,523个下调,以及109个新基因)。在前100个上调或下调的DEG中,许多基因存在于不同类型的癌症和肿瘤中。通过对两个系统网络的综合分析,我们选择了六个与钙稳态和信号传导、细胞凋亡、转录调控或化疗耐药相关的枢纽DEG(前B细胞白血病同源盒1、瞬时受体电位阳离子通道亚家族C成员1、AXL受体酪氨酸激酶、S100钙结合蛋白A9、S100钙结合蛋白A8和含核苷酸结合寡聚化结构域2)。我们在微阵列数据集中证实了这些基因表达的相关性。
我们的研究可能会深入全面地了解AGR的复杂机制,并得出对进一步临床研究有用的新基因表达特征。