Suppr超能文献

通过原子层沉积使用无机/有机混合层对有机发光二极管进行薄膜封装。

Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition.

作者信息

Zhang Hao, Ding He, Wei Mengjie, Li Chunya, Wei Bin, Zhang Jianhua

机构信息

Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Yanchang Road 149, Shanghai, 200072 China ; School of Mechatronic Engineering and Automation, Shanghai University, Yanchang Road 149, Shanghai, 200072 China.

Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Yanchang Road 149, Shanghai, 200072 China.

出版信息

Nanoscale Res Lett. 2015 Apr 8;10:169. doi: 10.1186/s11671-015-0857-8. eCollection 2015.

Abstract

A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%. The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

摘要

据报道,通过原子层沉积(ALD)生长的由Al2O3/ZrO2/铝酮(含碳骨架的铝醇盐)组成的混合纳米层压板可用于封装有机发光二极管(OLED)。本研究中的电学钙测试旨在测量纳米层压板的水蒸气透过率(WVTR)。我们发现,随着二元组(Al2O3/ZrO2/铝酮)数量的增加,防潮性能得到改善,在25°C、相对湿度(RH)85%的条件下,WVTR达到8.5×10(-5) g/m(2)/天。使用三对Al2O3(15 nm)/ZrO2(15 nm)/铝酮(80 nm)作为封装层,初始亮度为1500 cd/m(2)的绿色OLED的半衰期达到350小时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/749a/4402680/70a88c50a43e/11671_2015_857_Fig1_HTML.jpg

相似文献

1
Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition.
Nanoscale Res Lett. 2015 Apr 8;10:169. doi: 10.1186/s11671-015-0857-8. eCollection 2015.
2
Low-temperature atomic layer deposition of AlO/alucone nanolaminates for OLED encapsulation.
RSC Adv. 2019 Jul 4;9(36):20884-20891. doi: 10.1039/c9ra02111f. eCollection 2019 Jul 1.
3
A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers.
Nanoscale Res Lett. 2015 Mar 14;10:130. doi: 10.1186/s11671-015-0838-y. eCollection 2015.
5
Design of Highly Water Resistant, Impermeable, and Flexible Thin-Film Encapsulation Based on Inorganic/Organic Hybrid Layers.
ACS Appl Mater Interfaces. 2019 Jan 23;11(3):3251-3261. doi: 10.1021/acsami.8b11930. Epub 2019 Jan 8.
6
Realization of AlO/MgO laminated structure at low temperature for thin film encapsulation in organic light-emitting diodes.
Nanotechnology. 2016 Dec 9;27(49):494003. doi: 10.1088/0957-4484/27/49/494003. Epub 2016 Nov 9.
7
Organic/Inorganic Hybrid Thin-Film Encapsulation Using Inkjet Printing and PEALD for Industrial Large-Area Process Suitability and Flexible OLED Application.
ACS Appl Mater Interfaces. 2021 Nov 24;13(46):55391-55402. doi: 10.1021/acsami.1c12253. Epub 2021 Nov 10.
9
Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes.
Nanotechnology. 2016 Jul 22;27(29):295706. doi: 10.1088/0957-4484/27/29/295706. Epub 2016 Jun 14.

引用本文的文献

1
2
A Review of Various Attempts on Multi-Functional Encapsulation Technologies for the Reliability of OLEDs.
Micromachines (Basel). 2022 Sep 6;13(9):1478. doi: 10.3390/mi13091478.
3
Low-temperature atomic layer deposition of AlO/alucone nanolaminates for OLED encapsulation.
RSC Adv. 2019 Jul 4;9(36):20884-20891. doi: 10.1039/c9ra02111f. eCollection 2019 Jul 1.
4
Advanced Atomic Layer Deposition Technologies for Micro-LEDs and VCSELs.
Nanoscale Res Lett. 2021 Nov 18;16(1):164. doi: 10.1186/s11671-021-03623-x.

本文引用的文献

1
Electrical calcium test for moisture barrier evaluation for organic devices.
Rev Sci Instrum. 2011 Sep;82(9):094101. doi: 10.1063/1.3633956.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验