Suppr超能文献

Experimental determination of the light-trapping-induced absorption enhancement factor in DSSC photoanodes.

作者信息

Gagliardi Serena, Falconieri Mauro

机构信息

ENEA, C. R. Casaccia via Anguillarese 301, 00123 Roma, Italy.

出版信息

Beilstein J Nanotechnol. 2015 Apr 2;6:886-92. doi: 10.3762/bjnano.6.91. eCollection 2015.

Abstract

For dye-sensitized solar cells (DSSC), the fundamental process that determines the maximum short-circuit current is the absorption of light. In such devices, this is produced by the concurrent phenomena of light absorption by dye molecules and light trapping in the mesoporous, titania photoanode structure. The decoupling of these two phenomena is important for device characterization and the design of novel photoelectrode geometries with increased optical performance. In this paper, this task is addressed by introducing a spectral absorption enhancement factor as a parameter to quantify the light trapping effect. The experimental value of this parameter was obtained by comparing the experimentally determined fraction of absorbed light by a dye-sensitized photoanode with the light absorbed by the dye without the mesoporous titania structure. In order to gain more insight from this result, the fraction of light absorbed in the photoanode (on the basis of the dye loading capacity of the titania nanospheres) was also calculated by an optical model for the two extreme cases of the absence of light trapping and maximum light trapping. Accordingly, the photocurrent was calculated under the assumption of solar irradiation, which defined two useful boundaries. Using the experimentally derived values of the spectral absorption enhancement factor in the photoanode optical model, the DSSC short-circuit current can be calculated with good agreement with the value measured in practical devices based on the same photoanode structures. Therefore, our approach provides a realistic description of a practical device and can be exploited as an useful tool to assess the optical functionality of novel photoanode structures.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7753/4419673/34b55113b5f7/Beilstein_J_Nanotechnol-06-886-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验